tokenpocket官网|比特币为什么还没崩盘
tokenpocket官网|比特币为什么还没崩盘
比特币历史崩盘和熊市记录:2009-2022 - 知乎
比特币历史崩盘和熊市记录:2009-2022 - 知乎切换模式写文章登录/注册比特币历史崩盘和熊市记录:2009-2022万象财经万象财经所有资讯仅代表作者个人观点,不构成任何投资理财建议。从历史上看,比特币的价格已经从之前的高点下跌到低点的情况已经有三年多,而最近的高点发生在八个月前。Bitcoin(BTC) 截至发稿价格 为 ¥138,313 CNY($20,609.77),24 小时内下跌了 3.29%比特币 ( BTC ) 在 2022 年经历了有史以来最残酷的崩盘之一, BTC 价格在 2021 年达到 68,000美元后于今年6 月暴跌至 20,000 美元以下。2022 年 6 月成为比特币自 2011 年 9 月以来最糟糕的月份,其月度损失高达 40%。该加密货币还公布了11 年来最大的季度亏损。然而,当前的市场抛售并没有使比特币崩盘和熊市只到 2022 年。事实上,自从第一个比特币区块或创世区块于 2009 年 1 月被开采以来,比特币已经度过了相当多的加密寒冬。 .当我们缩小比特币价格图表时,Cointelegraph 发现了开创性加密货币历史上最显着的五次价格下跌。熊市第一名:2011 年比特币从 32 美元跌至 0.01 美元重新测试前高点的时间:20 个月(2011 年 6 月至 2013 年 2 月)比特币价格在 2011 年 4 月下旬突破了 1.00 美元的第一个主要心理关口,开始了其首次反弹,并于 2011 年 6 月 8 日达到 32 美元。但是,这种高涨并没有持续多久,因为比特币随后价值在几天内暴跌至底部,只剩0.01 美元的价值。大幅抛售主要归因于现已解散的 Mt. Gox 的安全问题,这是一家日本加密货币交易所,当时交易大部分比特币。由于其平台上的安全漏洞,该交易所发现 850,000 BTC 被盗,引发了人们对存储在交易所的比特币安全性的重大担忧。随着 BTC 在几天内损失了大约 99% 的价值,比特币 2011 年 6 月的闪崩成为比特币历史的重要组成部分。该事件在 BTC 价格恢复到之前的 32 美元高点之前很长一段时间开始,并仅在 2013 年 2 月才攀升至新高。与最近的图表相比,很难追踪 2013 年之前的比特币价格。流行的价格跟踪服务和 CoinGecko 或 CoinMarketCap 等网站在 2013 年 4 月之前不会跟踪比特币价格。CoinGecko 首席运营官Bobby Ong告诉 Cointelegraph:“比特币在 2013 年之前还处于起步阶段,当时交易比特币的地方并不多。 ” 他补充说,CoinGecko 没有收到很多关于 2013 年前数据的请求,因此该平台的优先级较低。熊市二号:2015 年比特币从 1,000 美元跌至 200 美元以下重新测试前高点的时间:37 个月(2013 年 11 月至 2017 年 1 月)根据 Cointelegraph 收集的 BTC 价格数据,比特币价格在 2013 年 4 月中旬达到100 美元,然后在 2013 年 11 月继续飙升至 1000 美元。比特币在历史上首次突破 1000 美元后不久就进入了巨大的熊市,一个月后比特币价格跌破 700 美元。价格下跌之际,中国央行于 2013 年底开始打击比特币,禁止当地金融机构处理比特币交易。在接下来的两年里,加密货币继续暴跌,在 2014 年 4 月触底在 360 美元左右,然后在 2015 年 1 月进一步下跌至 170 美元的低点。2013 年 4 月至 2017 年 1 月的比特币价格图表。2014 年漫长的加密货币冬天与被黑的 Mt. Gox 加密货币交易所有关,该交易所在 2014 年 2 月初停止了所有比特币提款。该平台随后暂停了所有交易,并最终在东京和美国申请破产。一些主要金融机构也对比特币提出了担忧,美国商品期货交易委员会在 2014 年底声称它对“比特币价格操纵”具有权力。直到 2015 年 8 月,比特币的总体情况都是负面的,当时趋势开始缓慢逆转。在强劲的牛市中,比特币最终在 2017 年 1 月重回 1000 美元大关。这是比特币历史上最长的历史高位回升期。熊市三号:比特币在 2017 年 12 月达到 20,000 美元后跌破 3,200 美元重新测试前期高点的时间:36 个月(2017 年 12 月至 2020 年 12 月)在 2017 年 1 月回升至 1,000 美元后,比特币在当年年底继续反弹至 20,000 美元的高位。然而,与比特币之前的历史峰值 1,000 美元类似,20,000 美元的高位是短暂的,因为比特币随后下跌并在几个月内损失了 60% 以上的价值。随着比特币市场持续萎缩,2018 年很快被称为“加密货币冬天”, BTC在 2018 年 12 月触底在 3,200 美元左右。加密货币冬天以另一家日本加密货币交易所 Coincheck 的安全问题开始。2018 年 1 月,Coincheck 遭受了一次巨大的黑客攻击,导致NEM (XEM) 加密货币损失了约 5.3 亿美元。随着 Facebook 和 Google 等科技巨头分别于 2018 年 3 月和 2018 年 6 月在其平台上禁止发布代币发行广告和代币销售广告,熊市进一步升级。全球加密货币监管努力也助长了熊市,美国证券交易委员会拒绝了 BTC 交易所交易基金的申请。比特币价格图表 2017 年 12 月至 2020 年 12 月。熊市第 4 号:BTC 在 2021 年从 63,000 美元跌至 29,000 美元重新测试前期高点的时间:六个月(2021 年 4 月至 2021 年 10 月)直到 2020 年,看跌情绪主导了加密货币市场,当时比特币不仅回到 20,000 美元,而且进入了大规模的牛市,在 2021 年 4 月 达到 63,000 美元以上。尽管 2021 年成为比特币最大的年份之一,随着加密货币的市值超过 1 万亿美元,比特币也遭遇了轻微的缺陷。在 4 月中旬创下历史新高后不久,比特币略有回落,其价格最终在三个月内跌至 29,000 美元的低点。2021 年的迷你熊市正值越来越多的媒体报道表明比特币挖矿存在与环境、社会和公司治理 (ESG) 相关的问题。围绕比特币的全球 ESG 相关的 FUD 进一步加剧,因为 Elon Musk 的电动汽车公司特斯拉在 5 月份放弃了比特币作为支付方式,首席执行官引用了 ESG 的担忧。仅仅三个月后,马斯克承认大约 50% 的比特币挖矿是由可再生能源驱动的。尽管中国开始对当地矿场进行重大打击,但熊市并没有持续多久。看涨趋势在 7 月底回归,比特币最终飙升至2021 年 11 月公布的 68,000 美元的历史新高。熊市 5 号:2022 年比特币从 68,000 美元暴跌至 20,000 美元以下重新测试前期高点的时间:待定比特币未能突破 70,000 美元,并于 2021 年底开始下跌。自去年 11 月以来,该加密货币已滑入熊市,创下 2022 年历史上最大的崩盘之一。6 月,加密货币自 2020 年以来首次跌破 20,000 美元,引发市场极度恐慌。持续的熊市很大程度上归因于算法稳定币的危机——即 TerraUSD Classic (USTC) 稳定币——旨在通过区块链算法而不是等值的现金储备支持与美元稳定的 1:1 挂钩。曾经是主要算法稳定币的中国科学技术大学,在 5 月失去了与美元挂钩。USTC 的脱钩引发了对更广泛的加密市场的巨大恐慌,因为稳定币在崩溃之前已成功成为现有的第三大稳定币。由于大规模清算和不确定性引发了加密货币借贷危机,Terra 的崩溃对加密市场的其他部分造成了多米诺骨牌效应。由于在残酷的市场条件下无法维持流动性,Celsius 等许多全球加密货币贷方不得不暂停提款。从历史上看,比特币的价格在三年多来一直低于之前的高点。上一个 68,000 美元的峰值仅发生在七个月前,比特币是否以及何时会回到新的高度还有待观察。你怎么看呢,欢迎在评论区留下观点。投资加密货币和其他初始硬币产品 (ICO) 具有很高的风险和投机性,本文不是作者对投资加密货币或其他 ICO的建议。由于每个人的情况都是独一无二的,因此在做出任何财务决定之前,应始终咨询合格的专业人士。作者对此处包含的信息的准确性或及时性不作任何陈述或保证。发布于 2022-07-11 12:05btc挖矿区块链(Blockchain)BTC赞同 2添加评论分享喜欢收藏申请
比特币涨这么多,但是真的卖得出去吗? - 知乎
比特币涨这么多,但是真的卖得出去吗? - 知乎首页知乎知学堂发现等你来答切换模式登录/注册虚拟货币比特币 (Bitcoin)比特币支付比特币涨这么多,但是真的卖得出去吗?或者换种问法,在我的理解里如果有大量抛售股票的情况,股票价格可能会遭遇崩盘,但是为什么我总感觉大家对于比特币的高价都很兴奋,如果有人大量在高位抛售比特…显示全部 关注者1,523被浏览3,436,081关注问题写回答邀请回答好问题 15229 条评论分享516 个回答默认排序纽约鸡汤君大城市里有老虎,关注我,一起打老虎。 关注看到这个问题我内心咯噔了一下,刚在Coinbase尝试卖了$5块钱的比特币,卖出去了,不怕了。但我又想万一把我整个家当,$3400刀的比特币,一次出手,币价会不会因为市场接不住而崩盘,很紧张。后来查了一下,过去24小时比特币的交易量是$710亿美金,67%用户增持,33%用户出售。我心里好受多了,没那么紧张了。 因为毕竟这个交易规模的市场,不像是我$3400块能左右的样子。但谁知道呢,或许是个杀猪盘。上一任老板是个印度人,少有的一米九大汉,我废了九牛二虎之力说服他跟我一起玩比特币,我当时亏了差不多几千刀,他每天路过我都会重重的捏一下我的肩膀,加上一句,what's going on with the coin? 我猜他可能赔了很多。后来肩膀被捏的太疼了,我就辞职换工作了,那是将近三年前了。想问问他我还有机会吗。 发布于 2021-01-03 13:12赞同 1061265 条评论分享收藏喜欢收起泛程序员天津大学 结构工程博士 关注2024年这应该不是问题了。现货日交易额大约 500 亿美金,合约、期货、ETF 啥的就更多了。单单 BlackRock 的 ETF 每天交易额就有 3 亿美金。。 非常活跃。。。随便卖。。发布于 2024-02-29 21:58赞同 3添加评论分享收藏喜欢
跌跌不休!比特币为何崩盘?|比特币_新浪科技_新浪网
跌跌不休!比特币为何崩盘?|比特币_新浪科技_新浪网
新浪首页
新闻
体育
财经
娱乐
科技
博客
图片
专栏
更多
汽车教育时尚女性星座健康
房产历史视频收藏育儿读书
佛学游戏旅游邮箱导航
移动客户端
新浪微博
新浪新闻
新浪财经
新浪体育
新浪众测
新浪博客
新浪视频
新浪游戏
天气通
我的收藏
注册
登录
新浪科技> 业界 > 正文
新闻
图片
视频
跌跌不休!比特币为何崩盘?
跌跌不休!比特币为何崩盘?
2022年06月15日 08:23
新浪科技
新浪财经APP
缩小字体
放大字体
收藏
微博
微信
分享
腾讯QQ
QQ空间
新浪科技讯 北京时间6月15日早间消息,据报道,比特币近日暴跌,截至发稿已跌至22006.3美元,在8个月的时间里,比特币已经下跌68%。BBC撰文,对比特币崩盘的原因和时间点进行了解读。
发生了什么?
近日,比特币价格创18个月以来的新低。虽然它在去年11月才刚刚创下7万美元的历史新高,但如今看来,却恍若隔世。在8个月的时间里,比特币已经下跌68%。
如果打开K线图,你会看到满眼绿色,脑海中一定会浮现出四个字——跌跌不休!
据悉,加密借贷平台Celsius已经聘请了律师事务所进行重组,并正在向投资者寻求可能的融资方案。甚至连美国最大数字加密货币交易所Coinbase都宣布裁员1100人。
为什么?
专家认为,这是因为全球经济环境所致,跌跌不休的不只是加密货币市场。
衰退阴影笼罩,通胀数据凶猛,利率逐步走高,生活成本上升。股市同样哀鸿遍野,标准普尔500指数已然进入熊市(较近期高点下跌20%)。
就连最大牌的投资者,手头的资金也不宽裕。除了那些财大气粗的对冲基金或企业外,像你我这样的普通投资者更是没什么投资渠道。整个投资市场都像是一潭死水。
对许多人而言,加密货币这种波动巨大、无法预测的投资品种,在当下的风险实在是太大了。
比特币不受政府监管,自然也就得不到保护,所以如果你用自己的积蓄来投资比特币,那么一旦下跌,或者一旦无法访问加密货币钱包,你就会血本无归。
为什么是现在?
上个月,其实已经有两种很低调但也很重要的加密货币崩盘,导致整个市场的信心崩溃。
于是,抛盘的压力进一步加强。
抛盘压力越大,比特币的价值就越低。这都源自它的运作模式——比特币的价值取决于市场需求。于是便引发连锁反应,促使更多人因为下跌而抛售……恶性循环就此开启。
与其他传统资产不同,比特币没有可供锚定的内在价值——按照《金融时报》编辑Katie Martin的说法,它没有固定资产,没有收入流,也没有底层业务。
“其价格完全取决于人们的买入意愿。”她说,“这对投资者来说是非常可怕的,因为如果有足够的人抛售,那就没有底价可言。只要有足够的人抛售或被迫抛售,没有什么能阻止它明天跌到1万美元。”
为什么是这几天?
上文介绍的是令比特币陷入困境的背景信息,下面再来看看过去24小时的情况:
1.全球最大加密货币交易所币安一度暂停了所有比特币的提款业务,持续大约几个小时。他们表示,这是因为“交易拥堵”——但许多人并不相信这个理由。
2.加密货币贷款机构Celsius出现了同样的问题——但它给出的理由是“极端市场情况”,而非技术原因。而现在,Coinbase交易所刚刚宣布裁员18%,并将“加密货币寒冬”列为原因之一。
3.投资者如惊弓之鸟,引发了更多抛盘。
前两件事情引发了恐慌。试想,如果你突然之间无法从银行取钱,或者你听说其他人取不出钱,你会怎么办?你肯定会奔向最近的自动取款机,其他人也会如此,而且大家都会争分夺秒。这种行为本身就会引发更多挤兑和恐慌。
怎样才能扭转局势?
简而言之——要稳定比特币的现状,仍然持有比特币的人需要坚定持有,而其他人则需要再次买入。
之前就发生过这种情况。
加密货币粉丝会告诉你,现在是买入良机,因为它很便宜——可你多半会按兵不动,眼睁睁看着它掉头向上。
这样的戏码已经上演过无数次。
在比特币的世界,“一夜暴富”的故事屡见不鲜,名人的背书也数不胜数。这也难怪它总能吸引新的资金。
特斯拉CEO埃隆·马斯克(Elon Musk)就曾多次表达他对加密货币的热爱——他的电动汽车公司特斯拉去年买入了15亿美元比特币。
但投资顾问却敦促投资者要格外谨慎。
“说实话,在如今这个价位,只有勇敢的人才会买入。”State Street Advisors董事总经理Altaff Kassam接受媒体采访时说。
提到勇敢的人,好莱坞一线明星马特·达蒙(Matt Damon)在2021年10月出现在一则加密货币广告中,标语写道:“财富青睐勇者。”这则广告在“超级碗”期间播放,在Twitter和YouTube上的播放量达到2800万次。
然而,在这则广告发布时买入比特币的“勇者”,此时此刻恐怕感受不到任何“青睐”——它如今的价格已经跌倒当初的1/3。
关键词 :
比特币
我要反馈
新浪科技公众号
“掌”握科技鲜闻 (微信搜索techsina或扫描左侧二维码关注)
相关新闻
加载中
点击加载更多
财经头条作者库
创事记
拼多多的宿命,快手能否跨越? 卫生间困扰星巴克 吉利收下魅族,手机企业要造车,汽车巨头爱搞机
阅读排行榜
评论排行榜
中国天眼发现地外文明可疑信号,相关团队正进一步排查 旷视孙剑意外去世震惊业内 死因仍在调查中 癌症史新突破!美国16名患者仅用药半年肿瘤全部消失 问界M5引发华为门店火灾?AITO:尚未发现车辆异常 火灾原因需等有关部门调查结果 小米,何至于此? SpaceX遭NASA警告:星舰发射不能炸毁宇航员专用发射架 工信部:我国新能源汽车产销量连续7年位居世界首位 英国央行行长贝利:加密资产没有内在价值 特斯拉进军印度市场失败 业务发展主管已辞职 升级iOS 16后,我哭了23次!
微信新增“群聊消息置顶”功能 新东方再次掌握流量密码!双语带货出圈,券商看好半月粉丝破千万 为什么Web3.0革命必将发生在中国? 警方通报鄂尔多斯一华为手机店起火:已致两人死亡 悼念!孙剑博士凌晨逝世,AI痛失大牛,旷视痛失技术领路人 小音咖被曝拖欠教师数月工资,公司称计划打折分期支付 为什么中国的硬科技和世界差距如此之大? 中国天眼发现地外文明可疑信号,相关团队正进一步排查 癌症史新突破!美国16名患者仅用药半年肿瘤全部消失 旷视科技发讣告:首席科学家、研究院院长孙剑去世
科学探索
威马递表港交所 累计售车不足10万去年亏...
科学大家
《科学大家》| 新冠疫苗接种已不是选择题...
苹果汇
疫情给世界和苹果带来哪些改变?我们和库克...
众测
百克龙E1500 Pro
来电聊
2018新浪科技风云榜回顾
专题
Kindle中国电子书店将停运 电子阅读...
官方微博
公众号
新浪科技
新浪科技为你带来最新鲜的科技资讯
苹果汇
苹果汇为你带来最新鲜的苹果产品新闻
新浪众测
新酷产品第一时间免费试玩
新浪探索
提供最新的科学家新闻,精彩的震撼图片
新浪科技意见反馈留言板
新浪简介|广告服务|About Sina
联系我们|招聘信息|通行证注册
产品答疑|网站律师|SINA English
Copyright © 1996-2022 SINA Corporation
All Rights Reserved 新浪公司 版权所有
新浪首页
新浪众测
语音播报
相关新闻
返回顶部
比特币什么时候才会崩盘?会以什么样的形式崩盘? - 知乎
比特币什么时候才会崩盘?会以什么样的形式崩盘? - 知乎切换模式写文章登录/注册比特币什么时候才会崩盘?会以什么样的形式崩盘?币进斗金比特币什么时候才会崩盘?在回答这个问题之前,币佣宝先跟大家聊聊虚拟货币崩盘,虚拟货币崩盘是指当现有的币圈投资者全部被套,没有新投资者入场,当被套的投资者开始只知道割肉卖数字货币,而不肯买数字货币时,造成的恶性循环,持续下跌,最终造成数字货币市场关门的现象。在了解完虚拟货币崩盘之后回归正题,虚拟货币一般多久崩盘呢?下面币佣宝就来给大家全面分析一下虚拟货币一般多久崩盘?比特币什么时候才会崩盘?严格意义上来说,这是一个伪命题,因为并不是所有虚拟币项目都会崩盘。比特币是虚拟货币,11年来没有崩盘。以太币是虚拟货币,现在越做越火。瑞波币是虚拟货币,现在已经和很多银行开始合作。所以说,不是每一个虚拟币都会崩盘。但是你要是从历史的角度来,从上千年的维度来看这个问题,那就大了去了。每个人都会死亡,每个朝代都会灭亡,每个职业都会消失,每一个伟人,都会被忘记。我们今天不从历史和哲学角度看问题,单单从现实出发,虚拟币多久会崩盘?准确来说,是垃圾的虚拟币多久会崩盘?其实崩盘有两个概念:归零和跑路。这两个概念有时候是一个意思,有时候又有所区别。先来研究第一个概念:归零。所谓归零,就是指某种虚拟币的价格为0。如果放在股市中就是退市,或者公司破产。简单来说,某一个虚拟币项目,前期发展的很好,在交易所进行交易,价格一度达到10元一个。但是后期项目方发展不给力,或者直接撂挑子不干了,那这个币就没有价值了。没人愿意买这个虚拟币,其价格就归零了。这时候,你当时花100块买的10个币,就变得一文不值。我们一般称这样的币,叫归零币。再来看第二个概念:跑路。在我们的项目打假板块里,有一些打着区块链的旗号,但实际上并没有区块链技术的骗子项目,我们俗称资金盘。这些资金盘也会推出一些虚拟币,但是这个虚拟币是上不了交易所的,只能私下交易。如果有一天项目方发现自己已经积累到了足够的资金,就会捐款跑路。这时候,你手里的币同样一文不值。你下载的软件也不再更新,客服也联系不到。这个时候我们也可以说,这个已经死了的项目或者虚拟币,崩盘了。差不多崩盘就是这两种情况,那么,崩溃到底需要多长时间呢?有些虚拟币崩盘很快,从开始上线到崩溃就几个月的时间。但是也有一些类似于GEC环保币的项目,硬生生的存活了三四年没有崩溃。但是大家也不要心存侥幸,即便GEC环保币这样的项目活得再久,也不改变其传销币的属性,崩盘只是早晚的事。虚拟货币崩盘的原因:很多人可能对于“崩盘”这个词了解的不多,不知道虚拟货币崩盘是什么意思。如果您关注过股票市场,当某一只股票发生了非常恶劣的事件,如发布虚假消息、生产虚假药品等,这只股票就会在后续很多交易日呈现连续下跌走势,甚至跌破发行面值。这种情况如果发生在虚拟货币中,就是所谓的虚拟货币崩盘。从目前市场上出现的虚拟货币崩盘的案例来看,大致可以分成是两种情况:一种是市场上的传销币在价格高位套现之后,幕后操控人准备跑路了,该虚拟货币在盘面上就会出现连续大幅下跌的情况,这纯属是个人牟利诈骗行为所导致的;第二种则是由于政策变化导致的像比特币等这样的数字货币接连下跌。对于虚拟数字货币的玩家来说,不管碰到以上哪一种崩盘的情况,都可能会对自己投资的资产形成非常大的负面影响,只不过影响的程度可能会有所差异。例如如果是碰上了传销币崩盘,基本上就是血本无归;而如果遇到了比特币崩盘,还可能存在后续反弹的机会。比特币什么时候才会崩盘?通过以上介绍,相信大家对于虚拟货币多久崩盘有所了解,现如今,有部分投资者为了资产保险,使用量化交易炒币app,进行24小时自动低买高卖进行获利,这其实是一种不错的投资方式,在其他投资市场也是有量化交易的存在,量化是一种优秀的仓位管理,稳健的收益方式。如果想要了解更多相关知识,可以关注币佣宝,小宝后期会持续更新相关报道!发布于 2020-12-07 16:37比特币 (Bitcoin)虚拟货币崩盘赞同添加评论分享喜欢收藏申请
一文速览比特币3次闪崩史 跌倒了还会再站起来吗?|美元_新浪财经_新浪网
一文速览比特币3次闪崩史 跌倒了还会再站起来吗?|美元_新浪财经_新浪网
新浪首页
新闻
体育
财经
娱乐
科技
博客
图片
专栏
更多
汽车
教育
时尚
女性
星座
健康
房产历史视频收藏育儿读书
佛学游戏旅游邮箱导航
移动客户端
新浪微博
新浪新闻
新浪财经
新浪体育
新浪众测
新浪博客
新浪视频
新浪游戏
天气通
我的收藏
注册
登录
区块链 > 比特币跌破33000美元 >
正文
行情
股吧
新闻
外汇
新三板
一文速览比特币3次闪崩史 跌倒了还会再站起来吗?
一文速览比特币3次闪崩史 跌倒了还会再站起来吗?
2021年01月11日 17:09
新浪财经综合
新浪财经APP
缩小字体
放大字体
收藏
微博
微信
分享
腾讯QQ
QQ空间
下载新浪财经app,追踪全球币市行情
作者:时代周报记者 侯明钰
从创历史新高到迅速暴跌,比特币价格玩起了“过山车”。
自1月9日凌晨跌破4万美元后,1月11日凌晨,比特币价格再度大跌逾12%,最低至33447美元,相当于一天之内狂跌了近6000美元。
尽管随后比特币价格短线拉升,但再也没有触及高点。截至1月11日中午发稿,比特币价格在35131.40美元左右。
在此之前的一周,比特币却处于一波疯狂的涨势。
1月8日,据Bitstamp数据,比特币一举突破4万美元关口,最高冲至41910美元,创历史新高,距离4.2万美元只差“临门一脚”。
回顾十余年的发展历史,比特币其实价格波动频繁,曾三次出现泡沫时期(即价格在短期内大幅上涨,后又大幅下跌)。
这一炙手可热的加密货币花了近11年的时间才达到了2万美元的价格,但2020年末迄今,仅用了22天就飙涨了2万美元,许多分析师和投资者正在担忧――比特币闪崩是否会再现?
3次闪崩史
比特币诞生于世界经济震荡之时。
2008年,全球金融危机爆发,市场避险情绪高涨。这一年的11月1日,一个自称中本聪(Satoshi Nakamoto)的人在P2P foundation网站上发布了比特币白皮书《比特币:一种点对点的电子现金系统》,陈述了他对加密电子货币的新设想。
2009年1月3日,中本聪在位于芬兰赫尔辛基的一个小型服务器上,亲手创建了第一个区块――即比特币的创世区块(Genesis Block),并获得了系统自动产生的第一笔50枚比特币的奖励,首枚比特币就此问世。
比特币诞生之时,价格还不到1美分,1美元可以兑换1300个比特币,此后一年内也不过涨了几美分。
2010年7月,比特币第一次被新闻网站Slashdot报道。这篇文章首次提及比特币项目,大量科技爱好者由此开始关注这个新鲜的概念。
2011年2月10日,投资者的浓厚兴趣将比特币的价格推升至1美元,当日也因此被称为“美元平价日”。
这种价格推进模式被延续了下来:数字货币技术及其基础设施的进步会推动价格上涨,价格被推高后又会助长下一步的泡沫。
第一个真正疯狂的比特币泡沫始于2011年6月1日。彼时,新闻网站Gawker发表文章《暗网丝绸之路》(The Darkweb Market Silk Road),讲述了如何在一个暗网上使用比特币购买非法药物。加上多家比特币交易所业已开业,购买比特币的门槛大大降低。短短一周内,比特币从10美元上涨至近30美元,但比特币价格在随后几个月发生暴跌,最低至2.14美元。
几年后,比特币又一次猛增至临界点,在2013年11月末突破1000美元,最高至1127.45美元。然而好景不长,到12月中旬,比特币的价格暴跌了近50%。这轮泡沫最显著的特点是跌幅较为平缓但持续时间长:随后一年多里,比特币价格降至172.15美元,并维持这种僵局长达数年之久。
2017年2月,比特币迎来了它最疯狂、最残酷的泡沫时期,甚至因此被称为“黑寡妇(the widowmaker)”。
比特币价格历史走势图
这场疯狂的始作俑者并不是比特币,而是其他新兴的加密货币。当年的ICO政策(首次公开募币,源自股票市场的首次公开发行概念,是区块链项目首次发行代币,募集比特币、以太坊等通用数字货币的行为)第一次允许加密货币创始人向市场直接出售自己的新产品,直接引发了一种空前的投机狂热。
市场各式投机心态相互助涨,“FOMO”(“害怕错失良机”)的心态盛行,比特币的大涨出现显然受益于这种狂潮。然而,随着更多其他加密货币的出现,比特币的主导地位也随之消失,其在加密货币领域的市场份额大幅下降。
2017年12月7日,比特币价格达到了20052美元,创当时历史新高,然而在当天之后,它的市场份额却自九月以来首次跌破了50%。
2017年12月19号,比特币市场份额跌至48.26%,直到次年的1月中旬,比特币的市场份额都在持续下滑,最终在2018年1月13号达到了仅占32.45%的历史最低点。
比特币的价格也在一路暴跌。2018 年的 12 月 15 日,比特币单价仅3194美元,创一年来最低,整体市值566亿美元,与2017年市值最高点3265亿美元相比,蒸发了2699亿美元。
当然,其他加密货币的暴跌更为惨烈。据报道,日本科技巨头、软银集团(SoftBank)创始人孙正义在2017年这场加密货币泡沫中损失了1.3亿美元。
在此之后,ICO行为被美国证券交易委员会(U.S. Securities and Exchange Commission)认定为非法证券发行而遭到取缔。
是喜是忧?
一度沉寂的比特币,为何再度“沸腾”起来?从外部环境来看,比特币这波暴涨,主要与全球避险情绪有关;从内部发展来看,此次比特币的暴涨与以往的泡沫时期有所不同。
受新冠肺炎疫情影响,2020年以来,全球经济遭遇重创,多国采取超常规货币宽松政策拯救经济,全球通胀预期增强。在高通胀、低增长、负利率的经济环境下,投资者和机构对避险资产的需求大大提升。而基于区块链技术的比特币,具有去中心化、总量有限、可追溯的特点,被认为可以有效避免通货膨胀,受到青睐。
经历过比特币大起大落的“币场老手”们普遍表示,当下比特币的暴涨与以往泡沫有所不同。ICO禁令有效规避了比也比相关的诈骗行为;新冠疫情引发的通胀对冲则增强了比特币的避险属性;随着时代发展,监管机构和上市公司的存在也使加密货币市场更加安全。
2020年,黑天鹅事件频发,疫情加剧,经济受到重创,全球大放水,对美元信任度降低,全球进入零利率甚至是负利率时代。业内人士分析认为,在这种剧变环境中,比特币的稀缺性显得尤为突出。
2021年开年,比特币水涨船高,其抗通胀和价值存储功能得到了市场的进一步肯定。支持者认为,2020年的上涨逻辑仍然成立,后市的行情仍然可期。
在摩根大通最近的一份研报中,分析人士认为,从长远来看比特币可能会达到14.6万美元,但要达到这一价格,比特币的波动性必须大大降低。
而看空者则坚持认为比特币是泡沫,Rosenberg Research经济学家和策略师戴维·罗森伯格(David Rosenberg)表示,在这么短的时间内比特币的抛物线走势是非常不正常的。
当然,尽管比特币泡沫确实存在,但越来越多的人认识到,从长远来看它的投资仍然是有回报的。乐观者们认为比特币的波动史只是一段看着断断续续、实则在稳定追赶的历史。总的来说,比特币的投机性使它不可避免地带有高风险的特性,它的未来还需迎接种种考验。
扫二维码 领开户福利!
海量资讯、精准解读,尽在新浪财经APP
责任编辑:唐婧
文章关键词:
美元 比特币价格 比特币
我要反馈
相关专题:
比特币跌破33000美元 专题
APP专享直播
上一页下一页
1/10
热门推荐
收起
新浪财经公众号
24小时滚动播报最新的财经资讯和视频,更多粉丝福利扫描二维码关注(sinafinance)
相关新闻
加载中
点击加载更多
最近访问
我的自选
01/江苏常州车厘子价格腰斩 商家:但这是榴莲最贵的一年02/事关7亿持卡人:信用卡透支利率限制取消 如何影响用卡?03/月收入5000以下不该吃西贝?馒头、花卷都是19元一个04/纺织业外贸回暖的“烦恼”:忙得不可开交 但最后钱没赚到05/新能源车冬季续航缩水遭吐槽 特斯拉Model 3“一周至少充两次”06/多地加码布局新兴产业 新能源生物医药集成电路等成部署重点07/拼多多:解约发帖员工 源自发现该员工在匿名社区发布极端言论08/ZARA姊妹品牌大撤离 快时尚败在了“快”?09/去年12月CPI同比微涨0.2% 2020年全年CPI同比上涨2.5%10/拜登欲推数万亿美元新经济刺激计划,每人发放2000美元支票
01/抱团还是散伙?周末机构已经吵翻天02/军工股为何依旧值得拥有?分析团队给出三大理由03/私募理财净值一个月暴跌97%:中来股份“被迫踩雷” 最新回应04/午后名博看市:上证3587点得失意义重大05/固态电池大事件:续航超1000公里 蔚来发布150度电池包 概念股曝光06/史丹利、合力泰卷入前证监会稽查局局长贪腐案 低价突击入股07/【军工*陈显帆】春季行情有望持续,建议超配核心赛道优质企业08/2021年全国两会后全面推行注册制或可期09/又有A股要“买醉”:上一个暴拉12个涨停 ST亚星拟变身白酒股10/一块电池燃爆资本圈 美股龙头1个月狂飙13倍 哪些A股又要飞?
01/成都银行领跌银行板块背后:房地产贷款踩线 减值计提增三成02/万亿信用卡市场迎新规 银行是否会调整信用卡透支利率03/1月11日在售高收益银行理财产品04/寄语大资管丨华夏理财苑志宏:2021,资本市场新机遇05/理财课程割“韭菜” 小白求富梦一场06/数字人民币再探路:多“点”开花 消费场景不断拓展07/多条“野路子”被切断 民营银行走到十字路口08/今年或迎银行上市“大年” 开年A股过会第一单花落瑞丰农商行09/网上买菜莫名被开通“美团月付”逾期或影响个人征信10/加快银行理财子公司转型升级 建立投资导向机制
7X24小时
徐小明 凯恩斯 占豪 花荣 金鼎 wu2198 丁大卫 易宪容 叶荣添 沙黾农 冯矿伟 趋势之友 空空道人 股市风云 股海光头
任泽平
老艾:
会复制2017"漂亮50"行情吗?
花长春:
2021年“再通胀”会温和归来
诸建芳:
2021年中国出口能否乘胜逐北
张明:
疫情、猪周期与互金的故事
储晓明:
中国市场不缺资金但缺资本
交易提示
操盘必读
证券报
最新公告
限售解禁
数据中心
条件选股
券商评级
股价预测
板块行情
千股千评
个股诊断
大宗交易
财报查询
业绩预告
ETF期权
类余额宝
基金净值
基金对比
基金排名商品行情
外盘期货
商品持仓
现货报价
CFTC持仓
期指行情
期指持仓
期指研究
行业指数
权重股票
期货名人
专家坐堂
高清解盘
期货入门
各国国债
期市要闻
期货研究
机构评论
品种大全外汇计算器
人民币牌价
中间价
美元指数
直盘行情
所有行情
美元相关
人民币相关
交叉盘
拆借利率
货币分析
机构观点
经济数据
专家坐堂
分析师圈
国债收益率
全球滚动
CFTC持仓
比特币外汇计算器
黄金资讯
白银分析
实物金价
ETF持仓
黄金TD
白银TD
金银币
专家坐堂
基础知识
现货黄金
现货白银
现货铂金
现货钯金
高清解盘
黄金吧 白银吧
黄金分析
CFTC持仓
叶檀
凯恩斯
曹中铭
股民大张
宇辉战舰
股市风云
余岳桐
股海战神
郭一鸣
赵力行
概念爱好者:散伙拐点来了 跟错节奏问题很严重逍遥渔夫v:酒做双顶大跌 哪些中大盘股接棒张雅溥:抱团股的散伙饭不应如此难堪钱坤投资:两市成交再超万亿 高位个股出现分化东坡的美酒:一要防吓二要防杀 惊涛骇浪在后面张中秦:1月11日周一市场综述红茶品股:大盘上涨趋势还在 调整不必恐慌首山:大盘未见顶回调幅度有限(11日收评)北京股商_薛利峰:5日均线失守短期调整或将展开常长亭老师:别不听老人劝“风险是涨出来的”浩瀚慧鹰德999:周二短线震荡盘升老股民大张:冲高杀跌后能否跌出共振点
叶檀
凯恩斯
曹中铭
股民大张
宇辉战舰
股市风云
余岳桐
股海战神
郭一鸣
赵力行
概念爱好者:散伙拐点来了 跟错节奏问题很严重逍遥渔夫v:酒做双顶大跌 哪些中大盘股接棒张雅溥:抱团股的散伙饭不应如此难堪钱坤投资:两市成交再超万亿 高位个股出现分化东坡的美酒:一要防吓二要防杀 惊涛骇浪在后面张中秦:1月11日周一市场综述红茶品股:大盘上涨趋势还在 调整不必恐慌首山:大盘未见顶回调幅度有限(11日收评)北京股商_薛利峰:5日均线失守短期调整或将展开常长亭老师:别不听老人劝“风险是涨出来的”浩瀚慧鹰德999:周二短线震荡盘升老股民大张:冲高杀跌后能否跌出共振点
董明珠还能为格力奋战多久?|《至少一个小时》
梁建章:中国人口衰竭的速度前所未有
冷友斌回应网友质疑:说价格高 对飞鹤不公平!
王中军:我喜欢比较“江湖”一点的人
:券商开户专属通道:新客专享理财福利多多 彭恩泽:提前关注超跌中的机会 彭恩泽:“科技+新能源汽车”逆市迎赚钱行情 跑赢大盘的王者微博1:三个臭皮匠顶一个诸葛亮?能吗? 中国国际期货广州:油市激荡向上 沙特推波助澜 跑赢大盘的王者微博1:跌出了恐慌盘 猎杀黑马时间到了 悲情浮夸:建议近期逐步低吸业绩较好的超跌题材股 情久终腻的人:万亿长期资金“活水”注入 公募基金与外资成主力
01-13
三友联众
300932
-- 01-11
通用电梯
300931
4.31 01-11
新炬网络
605398
37.61 01-11
屹通新材
300930
13.11 01-11
中英科技
300936
30.39
团车网再度调低IPO募资额
君实生物赴港IPO:研发烧钱苏州龙杰核心工艺将被淘汰
三只松鼠:IPO仍在排队中IPO排队者:高新成通关密码
股市直播
图文直播间
视频直播间
新浪财经意见反馈留言板
电话:400-052-0066 欢迎批评指正
新浪简介|广告服务|About Sina
联系我们|招聘信息|通行证注册
产品答疑|网站律师|SINA English
Copyright © 1996-2021 SINA Corporation
All Rights Reserved 新浪公司 版权所有
新浪首页
语音播报
相关新闻
返回顶部
崩盘!全球虚拟货币大抛售,比特币一度跌穿1.9万美元_金改实验室_澎湃新闻-The Paper
球虚拟货币大抛售,比特币一度跌穿1.9万美元_金改实验室_澎湃新闻-The Paper下载客户端登录无障碍+1崩盘!全球虚拟货币大抛售,比特币一度跌穿1.9万美元券商中国2022-06-19 07:59金改实验室 >字号6月18日下午,比特币一度跌破19000美元/枚,续刷2020年12月以来新低。过去7天内比特币跌幅达到33%,以太坊下跌36%,币安币(BNB)下跌27%。继5月中旬稳定币UST和其姊妹代币Luna出现危机之后,作为拥有170万用户的加密货币借贷巨头Celsius也身处危险边缘。本周一,Celsius宣称,因“极端市场条件”,该公司将暂停账户之间的所有提款、互换和转账。市场担心,作为Celsius股东的全球最大稳定币发行商Tether Limited会被拖下水,或将引发币圈的“雷曼危机”。全球虚拟币抛售潮持续!比特币7天内下跌33%6月18日下午4时许,比特币跌破19000美元/枚,续刷2020年12月以来新低。截至6月18日晚9点,比特币价格约为19171美元,24小时跌幅达到7.41%,过去7天跌幅达到33%。自2021年11月创下69000美元/枚的历史巅峰以来,比特币已贬值约70%。第二大加密货币以太币也日内暴跌7.3%至1000美元,为2021年1月以来的最低水平。距此前最高位下跌近80%。 另据Coinglass数据,截至6月18日23时,数字货币领域共有7.7万人在过去24小时内被爆仓,爆仓总金额为2.7亿美元。 BitMEX前首席执行官Arthur Hayes此前表示,20000美元和1000美元分别代表了比特币和以太坊的价格支撑位,如果被突破,将引发“巨大的抛售压力”。另外,比特币交易所Swan的比特币分析师Sam Callahan也认为,根据之前熊市的经验,比特币可能会从历史高点下跌80%以上。这意味着比特币将跌至13800美元。据CNN报道,有分析师表示,跌破20000美元关口,对于在疫情期间蓬勃发展的市场来说,将是一个清醒的里程碑。外汇公司Oanda的高级市场分析师克雷格·厄拉姆(Craig Erlam)周二在一份报告中表示:“跌破20000美元将是巨大的心理打击,并可能使比特币进一步下跌。”相比其他资产,虚拟货币的熊市格外残酷。根据CoinMarketCap数据,去年11月,整个加密货币市场11月总市值为3万亿美元,而现在的总市值约为8440亿美元,短短7个月的时间“蒸发”掉了2.16万亿美元,缩水超70%。值得一提的是,以比特币为首的虚拟货币价格不断跳水,也让不少币圈投资者很受伤。与2021年初花费15亿美元购买比特币相比,特斯拉投资损失已近6亿多美元。曾经的“华人首富”的币安交易所创始人赵长鹏在半年左右时间内损失了856亿美元,约合5770亿元人民币,跌幅达到九成。币圈“雷曼危机”拉开序幕?为何以比特币为代表的虚拟货币近期集体被投资者抛售?从宏观来看,随着世界主要央行提高利率以控制通胀,交易员纷纷抛售风险更高的投资,其中包括波动性较大的加密资产。更重要的原因或许是,本周一些投资者无法从部分加密货币交易所提取资金,加剧了投资者对于虚拟货币流动性的担忧。周一,全球最大的加密货币交易所Binance周一暂停了几个小时的比特币提款,称一些交易“卡住了”导致挤压。此外,拥有170万用户的加密货币借贷巨头Celsius也在周一宣称,因“极端市场条件”,该公司将暂停账户之间的所有提款、互换和转账。Celsius告诉其170万客户,已决定“在我们采取措施保护资产的同时,稳定流动性和运营。”Celsius没有说明何时重新开放交易所,该行表示,在允许客户再次提取存款之前,“需要一段时间”。公司官网显示,截至5月17日,该公司拥有价值118亿美元的资产。市场分析认为,虽然相较于去年10月的260多亿美元明显下降,但从规模上来看Celsius依然被投资者视为“币圈银行”。据媒体报道,Celsius在业内地位不容小觑,号称拥有170万客户,并向用户宣传通过该平台他们可以获得18%的收益率。用户在Celsius存入他们的加密货币,然后这些加密货币被借给机构和其他投资者,然后用户从Celsius赚取的收入中获得收益。更重要的是,按照Celsius首席执行官Alex Mashinsky的说法,他们几乎参与了所有主要“去中心化金融(DeFi)”协议。这意味着,继5月中旬稳定币UST和其姊妹代币Luna出现危机之后,作为币圈银行业成员的Celsius也已经身处危险边缘。一些投资者担忧道:如果这样的大型币圈银行都不能重新开放并允许提款,那么整个加密货币市场都将出现连锁反应。而市场更为关注的是,作为Celsius股东的Tether Limited——全球最大稳定币Tether的发行商,是否会被拖下水。如果把Celsius危机比作币圈的“贝尔斯登事件”,那么Tether Limited则是币圈雷曼级别的存在。Tether Limited是价值1800亿美元的稳定币领域最大的运营商,在促进整个加密货币市场的交易方面发挥着关键作用,还提供了与主流金融系统的联系,相当于币圈金融基础设施。所谓“稳定币”是一种市场价值与美元或黄金等“稳定的”储备资产挂钩的加密货币,在加密货币市场承担定价锚和交易媒介的功能。长期以来,Tether一直是业内受到最多审查的公司之一,目前它正面临来自监管机构、投资者、经济学家和越来越多怀疑论者的压力。人们担心,Tether如果出现问题,可能会引发多米诺骨牌效应,导致更大的崩盘。美国大学金融专家希拉里·艾伦(HilaryAllen)表示:“Tether真的是加密生态系统的命脉。如果它内爆,会导致整面墙倒塌。”币圈寒冬今年以来,币圈“雷声阵阵”,持续上演超级风暴。今年5月12日,一度被币圈玩家称为“币圈茅台”的LUNA币狂泻逾99%,这一最高曾达119.5美元的加密货币,在当天跌至不足3美分,数百亿美元财富几近归零。根据CNN的报道,虚拟货币行业正在裁员以度过“寒冬”。美国最大的加密货币交易所Coinbase周二表示,将裁员约1000人,占员工总数的18%。理由是担心即将到来的经济衰退和“加密寒冬”。其最新的财报显示,2022年一季度净亏损达4.3亿美元,而前一季度的净利润为8.4亿美元。自去年4月在纳斯达克上市以来,该公司的股票受到重创。曾经它的最高市值近1000亿美元,现在仅不到120亿美元。实际上,多家同行都在近几周宣布了大规模裁员,包括加密货币借贷平台BlockFi、加密货币交易平台Crypto.com、Gemini、总部位于阿根廷的交易所Buenbit。其中,Buenbit在5月份解雇了45%的员工。不过,根据外媒报道,截至目前,各位币圈的大佬们对于币圈的暴跌并不太担心。他们说,这是理所当然的,加密技术的熊市与股票的熊市不同:低点更极端,但高点也更极端。“加密货币的熊市通常会下跌85%至90%。”加密货币研究平台Blockworks的联合创始人杰森·亚诺维茨(Jason Yanowitz)表示。他还表示,在过去十年中,比特币经历了两次漫长的加密衰退,损失了80%以上的价值,但比特币也一次次反弹。2017年至2018年加密熊市期间,比特币暴跌83%,从19423美元跌至3217美元。但到2021 11月,比特币价格超过68000美元/枚。就在当地时间周五(6月17日),美联储在向国会递交的半年度货币政策报告中警示了稳定币的“结构脆弱性”。报告警告道,稳定币和其他数字资产市场近期出现的暴跌和剧烈波动凸显出这一快速增长领域的结构脆弱性。报告提示称,没有安全和足够流动资产支持且不受相关监管标准约束的稳定币会将给投资者带来风险,并可能给金融系统造成影响,包括加剧破坏性挤兑的概率。与此同时,支持稳定币的资产,其风险性和流动性缺乏透明度或进一步加剧上述脆弱性。(原题为:崩盘!全球虚拟货币大抛售,币圈"雷曼危机"来袭?比特币一度跌穿1.9万美元,170万用户巨头处危险边缘)责任编辑:是冬冬图片编辑:金洁澎湃新闻报料:021-962866澎湃新闻,未经授权不得转载+1收藏我要举报#比特币#虚拟货币查看更多查看更多开始答题扫码下载澎湃新闻客户端Android版iPhone版iPad版关于澎湃加入澎湃联系我们广告合作法律声明隐私政策澎湃矩阵澎湃新闻微博澎湃新闻公众号澎湃新闻抖音号IP SHANGHAISIXTH TONE新闻报料报料热线: 021-962866报料邮箱: news@thepaper.cn沪ICP备14003370号沪公网安备31010602000299号互联网新闻信息服务许可证:31120170006增值电信业务经营许可证:沪B2-2017116© 2014-2024 上海东方报业有限公万亿美元市值的比特币会归零吗?万一崩盘会否冲击金融体系_金改实验室_澎湃新闻-The Paper
市值的比特币会归零吗?万一崩盘会否冲击金融体系_金改实验室_澎湃新闻-The Paper下载客户端登录无障碍+1万亿美元市值的比特币会归零吗?万一崩盘会否冲击金融体系澎湃新闻记者 叶映荷2021-02-23 15:53来源:澎湃新闻 ∙ 金改实验室 >字号若市值万亿美元的比特币崩盘,会引起金融危机吗?2月22日,或受美国财政部长耶伦言论影响,比特币价格出现了瀑布式下跌,从58000美元左右一度跌至最低48000美元以下。根据币coin数据显示,2月22日当日比特币爆仓金额达18.17亿美元,其中多单爆仓16.56亿美元,空单爆仓1.61亿美元。就在同日,据CNBC报道,耶伦指出,比特币是一种高度投机性的资产,她认为人们应该意识到,这种资产可能极不稳定,并且她担心投资者可能遭受潜在损失。 尽管币价有所下滑,截至2月23日发稿,比特币价格接近5万美元,市值仍然接近1万亿美元。去年以来,包括特斯拉在内的主流企业也纷纷入局购入加密货币。在比特币大起大落的波动下,如此体量的比特币是否将会对传统经济、金融产生影响?万一崩盘,是否会引起金融危机?比特币有无“归零”可能性“比特币价值归零的可能性几乎没有。”力研咨询公司创始人、区块链和加密数字资产行业的研究者谷燕西说。但他也承认,比特币大幅震荡的可能性非常大,因为现在的个人和机构越来越多地持有比特币,而不是在买卖。甚至美国上市的挖矿公司都是通过现金买比特币储存,挖出来的比特币也不卖掉,所以市场中的可交易的比特币的数量越来越少,价格因此一定会大幅波动,特别是鉴于在一些交易场所还可以采用超大的杠杆进行交易。所有这些因素都会导致比特币的交易会大幅震荡。中国通信工业协会区块链专委会轮值主席、火币大学校长于佳宁也认为,短期看比特币市场会产生较高的价格波动,甚至可能出现高达30%-40%的深度回调。但比特币在历史上已经经历了多次深度调整,也曾出现多次“矿灾”,因此出现深度调整并不会意味着比特币出现彻底的崩盘,长期趋势仍将保持不变。“比特币价格大幅回调是有可能的。因为很多投资者用了高杠杆,在回调中会亏钱。”万向区块链与PlatOn首席经济学家邹传伟同样表示。他指出,即使比特币大幅下跌,比特币网络的安全性仍有保障,挖矿和交易等活动会继续进行,因此,比特币不会从世界上消失。于佳宁称,实际上,在比特币诞生至今的十余年里,海外一直有网站统计市场对比特币归零的报道。根据99bitcoins的统计数据显示,截至目前为止,比特币已经被宣告了401次死亡(归零)。2017年牛市收到的归零讣告最多,为124次。但我们也看到比特币当下的价格已是当初最高价的2.5倍有余。他认为,比特币存在最大的意义之一,就是将区块链技术和区块链应用进行了全球性的推广和普及。比特币是数字资产里面的“一般等价物”,类似数字资产市场的蓝筹,应用场景会随着区块链行业的发展进一步增加。“本次比特币牛市将促进创投资本加强对区块链应用领域的关注和投入,包括我国已将区块链列入到新型基础设施的范畴。可以说,如果比特币早期存在归零的风险,那么在目前区块链技术已经成为全球科技创新高地、落地应用百花齐放的时代,比特币归零的风险极低极低。”于佳宁说。“规模有限”“实体经济无关”万一比特币崩盘,会引发金融危机吗?“比特币属于规模很小的投资品,其价格大起大落在所难免。由于比特币规模有限,即使出现崩盘,也不会引发金融危机,对经济金融的影响不会很大。”中国银行原副行长、深圳海王集团首席经济学家王永利对澎湃新闻记者表示。“1万亿美元在金融市场简直就是微不足道,”上海交大上海高级金融学院实践教授胡捷也提到这一点,“外汇交易一天的交易额就超过5万亿美元,美国的股市市值是40万亿美元左右,中国的银行业资产有300万亿人民币。”根据债券研究公司Learnbonds的最新数据,过去十年内,全球外汇市场的每日成交量达6.6万亿美元。于佳宁也同样认为,尽管今年来比特币“数字黄金”属性的价值储存功能已经被部分金融机构、上市公司所认同,比如有限的供应量、全球流通的属性,可作为避险资产进行配置等,但是由于数字资产整体体量不大,比特币即使出现深度回调会对这些机构造成一定影响,但是影响十分有限,更没有到产生金融危机的地步。胡捷还说:“比特币是一个非常isolated(隔离的、孤立的)的市场,它跟实体经济没什么关系。”他认为,比特币就是一个“限量版的数字文物”,是一个文物市场,与其他金融市场没什么关系,是一帮爱好文物的人自得其乐的买卖,“我并不否认这个事情本身是一个会持续存在下去的市场,但是现在来说跟我们现实生活没有什么关系。”邹传伟也提到,比特币除了挖矿涉及硬件研发和建设以及耗电以外,与实体经济关系不大。因此,比特币大幅下跌,对实体经济的影响非常小。机构投资比特币目前只是零星现象在比特币涨势下,主流企业对比特币的关注度也在不断上升,投资比特币似乎成为趋势,那么比特币若崩盘,是否会引起企业债务问题导致金融风险?2月8日,特斯拉宣布已购买价值15亿美元的比特币,可能会不时或长期购入和持有数字资产。特斯拉还表示,希望接受比特币作为其产品的付款方式。万事达卡(Mastercard)在2月10日宣布,该公司将在今年开始支持在平台上使用部分加密货币支付。美国历史最悠久的银行纽约梅隆银行也在2月11日宣称,将入局比特币和其他数字货币。此外,全球最大的独立BI(Business Intelligence)公司MicroStrategy 在2020年8月份就购买了比特币,据CNBC2月16日报道,购买比特币以来,MicroStrategy股价已攀升逾7倍。该公司还在2月16日宣布,将发行6亿美元的可转换债券以购买更多比特币。对此,胡捷认为,目前只是零星现象,如果投资比特币的公司多了,可能比特币暴跌的时候,会对公司造成亏损,但对经济体不会有什么大的影响。另外,谷燕西表示,常规的观点是把投资组合中的0.5%至1%的资金用于投资比特币,所以这样的资金占比不会影响机构的整体投资组合。主流机构只会将其持有资金的一部分投资比特币,像MicroStrategy这样大幅举债购买比特币的案例几乎没有。“比特币对机构持仓价值的影响不会那么大。”他说。谷燕西认为,比特币的出生就是因为2008年的金融危机导致的。比特币的目的就是减少出现金融危机的几率。比特币会抑制金融危机的出现,“如果有金融危机的话,那也一定是基于法币的金融危机。”责任编辑:郑景昕校对:施鋆澎湃新闻报料:021-962866澎湃新闻,未经授权不得转载+1收藏我要举报#比特币查看更多查看更多开始答题扫码下载澎湃新闻客户端Android版iPhone版iPad版关于澎湃加入澎湃联系我们广告合作法律声明隐私政策澎湃矩阵澎湃新闻微博澎湃新闻公众号澎湃新闻抖音号IP SHANGHAISIXTH TONE新闻报料报料热线: 021-962866报料邮箱: news@thepaper.cn沪ICP备14003370号沪公网安备31010602000299号互联网新闻信息服务许可证:31120170006增值电信业务经营许可证:沪B2-2017116© 2014-2024 上海东方报业有限公比特币崩盘震惊市场,背后都有哪些原因?|崩盘_新浪财经_新浪网
比特币崩盘震惊市场,背后都有哪些原因?|崩盘_新浪财经_新浪网
新浪首页
新闻
体育
财经
娱乐
科技
博客
图片
专栏
更多
汽车
教育
时尚
女性
星座
健康
房产历史视频收藏育儿读书
佛学游戏旅游邮箱导航
移动客户端
新浪微博
新浪新闻
新浪财经
新浪体育
新浪众测
新浪博客
新浪视频
新浪游戏
天气通
我的收藏
注册
登录
外汇 > 比特币狂跌30%后暴力反弹 >
正文
行情
股吧
新闻
外汇
新三板
比特币崩盘震惊市场,背后都有哪些原因?
比特币崩盘震惊市场,背后都有哪些原因?
2021年05月20日 09:41
汇通网
新浪财经APP
缩小字体
放大字体
收藏
微博
微信
分享
腾讯QQ
QQ空间
下载新浪财经APP,了解全球实时汇率
原标题:比特币崩盘震惊市场,背后都有哪些原因?
5月19日,比特币一度跌至3个多月来的低点3万美元左右,部分原因是,投资者对虚拟货币资产的接受度意外出现下滑,以及监管方面的担忧和金融市场投机降温。
诸多利空消息导致比特币价格挫跌
由于一系列负面新闻和催化剂——包括特斯拉CEO马斯克的打压言论,以及全球多国的新一轮的监管举措——5月19日比特币和其他加密货币价格均大幅回落。
5月19日,比特币跌至三个多月低点,一度跌至3万美元左右,跌幅超过30%。以太币也大幅下跌,一度跌破2000美元,在不到24小时内跌幅超过40%。
如下图所示,比特币和以太币最近出现下滑
最近的下滑是去年下半年开始大幅上涨的逆转。自去年9月以来,比特币的价格仍上涨了200%以上,这是一场戏剧性牛市的产物,部分原因是对冲基金经理、银行和其他重磅上市公司似乎都已开始公开支持加密货币。
机构支持撤退
比特币疲软的部分原因似乎至少是,加密货币被市场投资者更广泛接受的状况暂时出现了逆转。
今年早些时候,马斯克宣布他将购买超过10亿美元比特币,以改善特斯拉的资产负债表。几家支付公司宣布,他们正在升级自己的系统,以应对更多的加密货币操作,华尔街的主要银行也开始为客户组建加密交易团队。加密货币交易公司Coinbase于4月中旬通过直接上市的方式上市。
然而,马斯克上周宣布,出于环保考虑,特斯拉将不再接受比特币作为支付方式。5月19日,他确实暗示特斯拉不会出售其持有的比特币。
此外,摩根大通的一份新报告称,从期货合约来看,机构投资者似乎正从比特币转向黄金,这对比特币来说又是一个打击。
监管方面的担忧
随着比特币及其相关资产在金融市场中所占的比重越来越大,它们也受到了世界各地监管机构越来越多的审查。
Bernstein的经济学家Harshita Rawat称:“我们认为,政府对加密货币的打击可能引发另一个‘加密货币寒冬’,交易活动减少。许多发展中国家可能会对加密货币进行更严厉的打击,这些国家可能将加密货币视为对其法定货币和货币体系的威胁。”
亚洲一些国家正在开发自己的政府运营的加密货币,周二重申了针对其他数字货币的规定,禁止金融公司提供加密货币交易服务。
在美国,新任命的证券交易委员会主席Gary Gensler本月早些时候表示,他认为监管机构应该保持“技术中立”,但加密市场需要更多的消费者保护。
狗狗币的兴起也可能损害加密货币市场的整体信誉。
狗狗币最初只是一个玩笑,后来在马斯克的帮助下获得了更广泛的欢迎。这种规模较小、发展程度较低的货币的一些走势表明,加密货币牛市与投机性股票日内交易的增加有关,而不是机构兴趣的增加。
(比特币价格日线图)
北京时间5月20日9:32,比特币价格报37025美元/枚。
海量资讯、精准解读,尽在新浪财经APP
责任编辑:郭建
文章关键词:
崩盘 比特币 美元
我要反馈
相关专题:
比特币狂跌30%后暴力反弹专题
APP专享直播
上一页下一页
1/10
热门推荐
收起
新浪财经公众号
24小时滚动播报最新的财经资讯和视频,更多粉丝福利扫描二维码关注(sinafinance)
相关新闻
加载中
点击加载更多
最近访问
我的自选
01/全球抛售潮:欧美股市集体大跌 大宗商品重挫02/A股“520”甜蜜还是虐心?“520概念股”近年走势来了!03/虚拟货币集体崩盘 “牛市女皇”喊话 马斯克最新发声04/美国刚宣布出口疫苗 美媒就发出这张让人尴尬的对比图05/大宗商品集体重挫 看似势不可挡的上涨行情也有软肋06/孙宇晨抄底比特币 称买入均价不到3.7万美元07/全球大抛售!加密货币跌到宕机,欧美股市全线重挫!何事引发巨震?08/加密货币正经历痛苦的一天 但游戏规则未必会改变09/木头姐仍是比特币信奉者 预言未来将达到50万美元10/加密货币一片暴跌中 灵魂人物马斯克和木头姐出来喊话
01/证监会约谈叶飞 叶飞:提交了很多很多资料 太值钱了02/2021年5月20日涨停板早知道:七大利好有望发酵03/收盘:联储纪要称经济前景仍有风险 美股小幅收跌04/5月19日上市公司晚间公告速递05/叶飞最新发声!称证监会稽查总队与其约定今日见面06/外盘头条:比特币演绎疯狂过山车 一度重返4万美元07/比特币演绎疯狂过山车 马斯克发布推文后重返4万美元大关08/太疯狂!比特币狂泻31%后暴力反弹 去年3月暴跌暴涨一幕正在重演?09/巨丰投顾:一大利好VS两个干扰 A股新的“战斗”或在下周10/主力资金:尾盘主力抢筹3只白马股 买入资金4亿元
01/美女博主20部手机成功欺骗百度和高德:制造了一场交通拥堵02/机构不相信比特币了?三大协会联手“封杀” 比特币一度跌破37000美元03/寻宠猎人:目标客户聚焦中高端人群 最贵一次收费超过3万元04/防范打击电信网络新型违法犯罪 精准打击买卖银行账户黑灰产业05/房贷利率连涨5个月!银行贷款“签三函” 三城涨幅超10BP06/三大协会禁止金融、支付机构虚拟货币交易 多处提示违法违规犯罪07/互金协会:加强互联网金融行业自律管理 有效落实反洗钱和反恐怖融资制度08/币市“大跳水”!比特币价格狂泻30% 显卡终于能降价了?09/三协会公告:金融机构不得提供虚拟货币服务10/银行机构微博影响力哪家强?交通银行下降1位
7X24小时
徐小明 凯恩斯 占豪 花荣 金鼎 wu2198 丁大卫 易宪容 叶荣添 沙黾农 冯矿伟 趋势之友 空空道人 股市风云 股海光头
任泽平
管清友:
大宗商品上演“过山车”
cf40:
下半年金融风险或现上行压力
李德林:
状元的春天
周诚君:
人民币国际化如何承担责任
汪涛:
投资出口是经济反弹主要动力
交易提示
操盘必读
证券报
最新公告
限售解禁
数据中心
条件选股
券商评级
股价预测
板块行情
千股千评
个股诊断
大宗交易
财报查询
业绩预告
ETF期权
类余额宝
基金净值
基金对比
基金排名商品行情
外盘期货
商品持仓
现货报价
CFTC持仓
期指行情
期指持仓
期指研究
行业指数
权重股票
期货名人
专家坐堂
高清解盘
期货入门
各国国债
期市要闻
期货研究
机构评论
品种大全外汇计算器
人民币牌价
中间价
美元指数
直盘行情
所有行情
美元相关
人民币相关
交叉盘
拆借利率
货币分析
机构观点
经济数据
专家坐堂
分析师圈
国债收益率
全球滚动
CFTC持仓
比特币外汇计算器
黄金资讯
白银分析
实物金价
ETF持仓
黄金TD
白银TD
金银币
专家坐堂
基础知识
现货黄金
现货白银
现货铂金
现货钯金
高清解盘
黄金吧 白银吧
黄金分析
CFTC持仓
叶檀
凯恩斯
曹中铭
股民大张
宇辉战舰
股市风云
余岳桐
股海战神
郭一鸣
赵力行
轩阳论市:5月20日热点分析及实战策略涨停王者V5:大盘发出信号 今日能否突破3530黄珏老鹅:11股昨日获主力资金青睐黄家茶社:周四回踩检验3500点支撑张涛论市:黑周四会再次上演吗大卫davy:短期整固有利于中期上行股海灯塔:震荡未完、急跌增持邦尼-----就是帮自己:股指在这里酝酿蓄势再度发力股海牧童:5月20日重点关注的板块及个股拾金客v:短线需要确认底部红茶品股:大宗商品爆跌 考验A股的时刻再次来临盘股王者:5月20日热点资讯涨停早知道
叶檀
凯恩斯
曹中铭
股民大张
宇辉战舰
股市风云
余岳桐
股海战神
郭一鸣
赵力行
轩阳论市:5月20日热点分析及实战策略涨停王者V5:大盘发出信号 今日能否突破3530黄珏老鹅:11股昨日获主力资金青睐黄家茶社:周四回踩检验3500点支撑张涛论市:黑周四会再次上演吗大卫davy:短期整固有利于中期上行股海灯塔:震荡未完、急跌增持邦尼-----就是帮自己:股指在这里酝酿蓄势再度发力股海牧童:5月20日重点关注的板块及个股拾金客v:短线需要确认底部红茶品股:大宗商品爆跌 考验A股的时刻再次来临盘股王者:5月20日热点资讯涨停早知道
董明珠还能为格力奋战多久?|《至少一个小时》
梁建章:中国人口衰竭的速度前所未有
冷友斌回应网友质疑:说价格高 对飞鹤不公平!
王中军:我喜欢比较“江湖”一点的人
:券商开户专属通道:新客专享理财福利多多 马上钧:指数缩量整固 买入主线越发清晰 悲情浮夸:碳中和再度反弹 另外可适当关注汽车板块 常长亭:主流资金已经全面追逐中报业绩股 用户7541192712:指数继续震荡 量能基本与昨天持平 陈恩耳:警惕机构投资者不守正道的危害性 用户7540927647:Mini LED常被视为传统LCD的迭代升级 用户7541192628:必记超级高价股再次抱团取暖不要相信太多
05-24
普联软件
300996
-- 05-24
圣诺生物
688117
-- 05-21
宁波方正
300998
6.02 05-21
超捷股份
301005
36.45 05-20
江苏博云
301003
55.88
团车网再度调低IPO募资额
君实生物赴港IPO:研发烧钱苏州龙杰核心工艺将被淘汰
三只松鼠:IPO仍在排队中IPO排队者:高新成通关密码
股市直播
图文直播间
视频直播间
新浪财经意见反馈留言板
电话:400-052-0066 欢迎批评指正
新浪简介|广告服务|About Sina
联系我们|招聘信息|通行证注册
产品答疑|网站律师|SINA English
Copyright © 1996-2021 SINA Corporation
All Rights Reserved 新浪公司 版权所有
新浪首页
语音播报
相关新闻
返回顶部
一周内蒸发逾3000亿美元,加密货币暴跌引发不安 - 纽约时报中文网
发逾3000亿美元,加密货币暴跌引发不安 - 纽约时报中文网国际 中国 商业与经济 镜头 科技 科学 健康 教育 文化 风尚 旅游 房地产 观点与评论 简繁中文简体 繁体纽约时报 出版语言ENGLISH (英语)ESPAÑOL (西班牙语)字体大小 小 中 大 超大科技中文 中中英双语 双语英文 英一周内蒸发逾3000亿美元,加密货币暴跌引发不安DAVID YAFFE-BELLANY, ERIN GRIFFITH, EPHRAT LIVNI2022年5月13日本周,加密货币价格的暴跌导致超过3000亿美元的价值蒸发。 Samuel Corum for The New York Times旧金山——比特币价格暴跌至2020年以来的最低点。大型加密货币交易所Coinbase市值暴跌。一种自称是稳定交易手段的加密货币崩溃了。自周一以来,加密货币价格暴跌导致出现逾3000亿美元损失。加密货币世界在本周的抛售中彻底崩溃,这生动地说明了试验性和不受监管的数字货币存在的风险。虽然金·卡戴珊等名人和伊隆·马斯克等科技巨头都在谈论加密货币,但比特币和以太币等虚拟货币的加速下跌表明在某些情况下,两年的金融收益可能会在一夜之间消失。这一恐慌时刻堪称2018年比特币暴跌80%以来加密货币最糟糕的一次复位。但这一次,价格下跌产生了更广泛的影响,因为有更多的人和机构持有这些货币。批评人士表示,这次崩溃早该发生了,而一些交易员则将这种警报和担忧与2008年金融危机开始之时相提并论。“这就像一场完美风暴,”瑞穗集团研究加密货币公司和金融技术的分析师丹·多勒夫说。广告根据皮尤研究中心的一项调查,在新冠病毒大流行期间,人们纷纷购入虚拟货币,现在有16%的美国人拥有一些虚拟货币,高于2015年的1%。北方信托银行和美国银行等大银行以及对冲基金也纷纷涌入,一些对冲基金利用债务进一步充实自己的加密货币投资。早期投资者可能还是不用太担心。但对于去年价格飙升时买入加密货币的投资者来说,本周的快速下跌尤为严重。加密货币的下跌有一部分是因为投资者普遍撤出了存在风险的资产,这是由利率上升、通货膨胀和俄罗斯入侵乌克兰导致的经济不确定性引发的趋势。这些因素加剧了随美国生活恢复正常而开始的所谓“疫情后遗症”,封锁期间蓬勃发展的Zoom和Netflix等公司的股价也在其中受损。但加密货币的下跌比股市的广泛暴跌更为严重。今年以来,标准普尔500指数下跌了18%,而比特币的价格同期下跌了40%。仅在过去五天里,比特币就暴跌了20%,而标准普尔500指数下跌了5%。加密货币的崩溃会持续多久尚不得而知。加密货币价格通常会从重大损失中反弹,尽管在某些情况下需要数年时间才能达到新的高点。“‘这是又一次雷曼兄弟事件吗?’很难说,”区块链公司Paxos的创始人之一查尔斯·卡斯卡利亚说。雷曼兄弟是一家在2008年金融危机之初破产的金融服务公司。“我们需要更多的时间来弄清楚。你不能以这种速度做出反应。”广告加密货币的起源可以追溯到2008年,当时一个自称中本聪的神秘人物创造了比特币。这种虚拟货币被描绘成去中心化的传统金融体系替代物。比特币的支持者不愿依靠银行这样的“看门人”来进行商贸活动,他们更愿意在自己之间进行交易,将每一笔交易记录在一个名为区块链的共享账本上。随着加密货币从一种对新奇玩意的好奇心发展为一场狂热运动,包括马斯克、Twitter创始人杰克·多尔西和投资者马克·安德森在内的知名科技领袖都表达了对这项技术的认可。加密货币的价值爆炸式增长,催生了一批新的加密货币亿万富翁。以太币和多吉币等形式的加密货币也吸引了公众的注意,特别是在疫情期间,金融系统中的过剩现金导致人们为娱乐而进行日间交易。加密货币价格在去年年底达到峰值,之后随着对经济的担忧加剧而下滑。但本周,稳定币TerraUSD崩盘后,崩溃势头进一步增强。稳定币旨在成为一种更可靠的交易方式,通常与美元等稳定资产挂钩,目的是不影响价值波动。许多交易员使用它们购买其他加密货币。TerraUSD得到了Arrington资本和Lightspeed创投等可靠的风险投资公司的支持,它们投资了数千万美元来资助建立在该货币上的加密项目。加密货币平台Tezos的创始人之一凯瑟琳·布雷特曼说,这“给了那些本来可能不了解这些事情的人一种虚假的安全感”。但TerraUSD没有现金、国债或其他传统资产的支持。相反,它的所谓稳定性来自于将其价值与另一种名为Luna的姊妹加密货币挂钩的算法。本周,Luna几乎失去了全部价值。这立即对TerraUSD产生了连锁反应,于周三跌至23美分的低点。随着投资者的恐慌,最受欢迎的稳定币、加密货币交易的支柱Tether也动摇了自己的1美元挂钩政策,最低跌至0.95美元,之后有所回升。(Tether由现金和其他传统资产支持。)广告这种波动很快引起了华盛顿的注意,稳定币一直在监管机构的关注范围内。去年秋天,美国财政部发布了一份报告,呼吁国会为稳定币生态系统制定规则。“我们确实需要一个监管框架,”美国财政部长珍妮特·耶伦周四在国会听证会上表示。“在过去的几天里,我们看到这些风险有了真实的展示。”她补充说,稳定币“带来了我们几世纪以来所知的与银行挤兑有关的同样风险”。在佛罗里达州麦德利,工人们正在安装加密货币挖掘数据中心。 Rose Marie Cromwell for The New York Times与此同时,加密系统的其他部分也出现了问题。周二,最大的加密货币交易所之一Coinbase报告了4.3亿美元的季度亏损,并表示它已失去了超过200万活跃用户。自2021年4月成功上市以来,该公司的股价暴跌了82%。Coinbase首席执行官布莱恩·阿姆斯特朗试图在Twitter上安抚客户,称该公司没有破产的危险。此前,一项关于其资产所有权的必要法律披露激起了恐慌。加密货币价格也大幅下跌。周四,比特币的价格曾跌至2.6万美元,比去年11月的峰值低了60%,之后略有上涨。自今年年初以来,比特币的价格走势与纳斯达克指数的走势非常相似,后者是一个偏重科技股的基准指数,这表明投资者正在像看待其他风险资产一样看待比特币。广告以太币的价格也暴跌,在过去一周损失了超过30%的价值。Solana和Cardano等其他加密货币也在下跌。一些分析人士说,任何恐慌都可能被夸大了。瑞穗的一项研究显示,在比特币价格跌破2.1万美元之前,Coinbase上的一般比特币持有者都不会亏损。多勒夫认为,只有到发展到那个地步,才有可能出现真正的死亡旋涡。“只要没人赔钱,比特币就能运转,”他说。“一旦它回到那个价位,那才是会喊出‘我的妈呀’的时候。”过去经历过加密货币波动的专业投资者也保持了冷静。为1000名财务顾问提供加密货币投资服务的Bitwise资产管理公司首席执行官亨特·霍斯利本周与其中70多人会面,讨论市场情况。他说,许多公司没有卖出加密货币,因为其他所有资产也都在下跌。有些人甚至试图利用这次下跌赚钱。“他们的看法是,‘这很吓人,但是无处躲藏,’”他说。尽管如此,价格暴跌还是让加密货币交易员感到不安。就在几个月前,区块链的支持者还预测,比特币的价格今年可能会涨到10万美元。广告交易公司OANDA的加密货币分析师埃德·莫亚说:“我从没想过会这么快走衰。”Alan Rappeport对本文有报道贡献。David Yaffe-Bellany为时报报道虚拟货币和金融科技相关议题。他毕业于耶鲁大学,曾在得克萨斯州、俄亥俄州、康涅狄格州以及华盛顿特区报道新闻,欢迎在Twitter上关注他:@yaffebellany。Erin Griffith自时报旧金山分社报道科技初创公司和风险投资相关议题。加入时报之前,她是ired和《财富》(Fortune)杂志的高级作者。欢迎在Twitter上关注她:@eringriffith。Ephrat Livni自华盛顿为时报“交易录”(DealBook)栏目报道商业与政策的交汇。她曾是Quartz的资深记者,报道法律、政治等相关议题,也曾在公共和私营部门从事法律工作。欢迎在Twitter上关注她:@el72champs。翻译:晋其角点击查看本文英文版。相关报道比特币跳水,跌破3万美元大关2021年6月23日比特币,泡沫、骗局和重重问题2018年1月31日硅谷“验血骗局”案霍姆斯被判欺诈罪成2022年1月5日最受欢迎从戴安娜到凯特,陷于舆论风暴中心的王室成员临终前,人们会看到什么真假家庭照:凯特王妃“精修图”引发的网络谣言和阴谋论TikTok面临被封杀命运是自食其果打造星链替代品:台湾的人造卫星网络计划封禁TikTok不能解决任何问题中国经济低迷,习近平为何仍自信“东升西降”国际芯片企业为何涌向马来西亚中国出口激增,引发欧美国家警惕与担忧“TikTok法案”无法解决的深层安全问题国际中国商业与经济镜头科技科学健康教育文化风尚旅游房地产观点与评论国际亚太南亚美国美洲欧洲中东非洲中国时政经济社会中外关系港澳台商业与经济全球经济中国经济交易录文化阅读艺术电影与电视体育风尚时尚美食与美酒生活方式观点与评论专栏作者观点漫画更多镜头科技科技公司科技与你科学健康教育旅游房地产免费下载 纽约时报中文网iOS 和 Android App点击下载iOS App 点击下载Android App© 2024 The New York Times Compa加密货币市场是否已崩盘?专家们如何看待其未来? | 经济 | 半岛电视台
市场是否已崩盘?专家们如何看待其未来? | 经济 | 半岛电视台升级您的浏览器 为了获得更安全的网页浏览体验,请升级到现代浏览器,例如 Chrome、Firefox、Safari、Opera 或 Edge。跳过链接跳转至内容显示导航菜单Navigation menu新闻加载更多乌克兰战争巴以战争评论经济视频科技体育加载更多2020年 东京奥运会2022卡塔尔世界杯更多加载更多文化图集健康科学历史女性点击搜索search经济|世界加密货币市场是否已崩盘?专家们如何看待其未来?加密货币市场已经损失了超过1.5万亿美元的价值 (社交网站)Published On 2022年1月25日2022年1月25日加密货币市场正在经历一场严重的崩盘,尤其是两种最大规模的货币——“比特币”和“以太币”,二者在过去几周和几个月里内出现了大幅下跌,与此同时,经济分析师们预计,未来几周还将出现进一步的崩盘。
比特币继续跌至6个多月以来的最低水平,原因是在乌克兰危机的背景下出现的全球范围内对高风险资产的持续快速抛售。
24日早间,比特币升至3.6万美元的水平,但却没有坚持太久。
这种幅度的下跌使比特币的市值损失了超过0.5万亿美元,而数字货币整体的市值损失了超过了1.5万亿美元。
与去年11月接近7万美元的高位单价相比,比特币的价值已经下跌了接近一半。
导致比特币出现这种情况的还有另外一个原因,即预计美联储将在今天和后天的会议上加息,这就意味着股票、货币和数字货币等风险资产的收入将会下降,而这正是让当前的投资者们对加密货币避而远之的原因。
比特币和以太坊大幅下跌
美国财富网站(fortune)经济事务编辑安妮·斯利德尔兹在该网站上发表的一篇文章中,监测了加密货币市场在过去几周和几个月内遭遇的最大崩盘,其中,比特币和以太币这两种规模最大的数字货币自去年11月中旬以来共下跌了40%以上,比特币的价格从去年11月份的6.9万美元,跌至当前的不到3.7万美元。
作者解释称,从长远来看,比特币等数字货币价格的大幅下跌,对加密货币投资者而言不足为奇,她还指出,根据加密货币投资公司Arca的首席投资官杰夫·杜尔曼的说法,有迹象显示人们对强大数字资产的信心正在减弱。
作者指出,比特币的贬值恰逢整个市场的下跌,尤其是成长股、科技股等风险较高的资产,其中,以科技股为主的纳斯达克指数已经跌入了定义为跌幅10%的修正区域,从而表明比特币与科技股等资产之间的相关性并非一种新的趋势。
下跌的原因何在?
根据专家们的意见,作者提出了导致加密货币价格大幅下跌的部分原因,其中包括:
最重要的原因之一是美联储(美国中央银行)的政策。美联储在去年11月的会议上决定提高利率以应对通货膨胀,而这被认为是对曾在2020年加强数字货币价格的政策的一种反向转变。
作者引用杜尔曼的话指出,近期的价格崩盘打破了将比特币归为不受通货膨胀影响的类型的观点,杜尔曼还指出,比特币现在被各国政府和传统金融机构作为整体风险指标而进行交易,他还强调,这种情况将在短期内持续下去,尽管他认为这并不会在长期范围内成为普遍的观点。
作者指出,导致比特币价格下跌的其他原因之一,是加密货币市场内的交易商更喜欢交易那些被人们看好的替代货币,她还指出,像“索拉纳”(Solana)、“波卡币”(Polkadot)、“卡尔达诺”(Cardano)、“雪崩币”(Avalanche)等数字货币,正在成为能与比特币和以太币竞争的主要加密货币,根据Oanda公司的加密货币高级市场分析师爱德华·莫亚的说法,这些货币在加密货币市场的交易中击败了比特币并取得了成功。
作者还在这篇文章中引用爱德华·莫亚的话称,全球能源危机和俄罗斯威胁禁止使用比特币,都是比特币难以稳定其价格和在加密货币市场内流通的原因之一。
未来的预测
在对未来的推断中,作者强调,谈论加密货币市场的未来走向,取决于每种货币及其本身的表现,作者援引爱德华·莫亚的话称,比特币的价格至少将在接下来的两个月内保持波动状态,其最低交易价格可能跌至3.5万美元,而最高价格可能达到5万美元。
莫亚表示,预计比特币价格将在美联储再次加息后企稳,并在年底前达到6万美元,而这场加息预计会在2022年第一季度发生。
在有关以太币的问题上,作者援引莫亚的话指出,预计以太币的价格将从目前交易的2600美元在今年年内上升至超过4000美元的水平,他还指出,以太币当前在市场上的损失有利于其他数字货币的发展。
作者援引日本加密货币交易所Bitbank的加密市场分析师的话称,预计比特币的最低交易 价格将跌至2.8万美元的水平,但是到今年年底可能会达到6至8万美元的水平,与此同时,加密货币投资公司Arca的首席投资官杰夫·杜尔曼则认为,比特币价格的下跌被夸大了。
作者强调,每一种数字货币都有其不同于其他货币的独特表现,她还指出,由于索拉纳和雪崩币等多种数字货币的大幅上涨,专家们预计数字货币之间的差异会在2022年进一步扩大。
与此同时,她还指出,在数字加密货币的世界中,由于市场恐慌而产生了许多的变数,从而导致部分行业的下跌和另外一部分行业的上涨。
来源 : 半岛电视台 + 电子网站aj-logoaj-logoaj-logo网站地图加载更多半岛研究中心半岛媒体学院半岛公共自由与人权学院半岛新闻频道半岛英文频道半岛直播半岛纪录片频道半岛巴尔干频道AJ+ 阿文版条款和条件隐私政策Cookies政策Cookies偏好网站地图联系我们加载更多广告服务关注 ALJAZEERA 中文网:facebooktwitteryoutubeinstagram-colored-outlinerssALJAZEERA 媒体网络版权所有 ©2024
一文速览比特币3次闪崩史 跌倒了还会再站起来吗?|美元_新浪财经_新浪网
一文速览比特币3次闪崩史 跌倒了还会再站起来吗?|美元_新浪财经_新浪网
新浪首页
新闻
体育
财经
娱乐
科技
博客
图片
专栏
更多
汽车
教育
时尚
女性
星座
健康
房产历史视频收藏育儿读书
佛学游戏旅游邮箱导航
移动客户端
新浪微博
新浪新闻
新浪财经
新浪体育
新浪众测
新浪博客
新浪视频
新浪游戏
天气通
我的收藏
注册
登录
区块链 > 比特币跌破33000美元 >
正文
行情
股吧
新闻
外汇
新三板
一文速览比特币3次闪崩史 跌倒了还会再站起来吗?
一文速览比特币3次闪崩史 跌倒了还会再站起来吗?
2021年01月11日 17:09
新浪财经综合
新浪财经APP
缩小字体
放大字体
收藏
微博
微信
分享
腾讯QQ
QQ空间
下载新浪财经app,追踪全球币市行情
作者:时代周报记者 侯明钰
从创历史新高到迅速暴跌,比特币价格玩起了“过山车”。
自1月9日凌晨跌破4万美元后,1月11日凌晨,比特币价格再度大跌逾12%,最低至33447美元,相当于一天之内狂跌了近6000美元。
尽管随后比特币价格短线拉升,但再也没有触及高点。截至1月11日中午发稿,比特币价格在35131.40美元左右。
在此之前的一周,比特币却处于一波疯狂的涨势。
1月8日,据Bitstamp数据,比特币一举突破4万美元关口,最高冲至41910美元,创历史新高,距离4.2万美元只差“临门一脚”。
回顾十余年的发展历史,比特币其实价格波动频繁,曾三次出现泡沫时期(即价格在短期内大幅上涨,后又大幅下跌)。
这一炙手可热的加密货币花了近11年的时间才达到了2万美元的价格,但2020年末迄今,仅用了22天就飙涨了2万美元,许多分析师和投资者正在担忧――比特币闪崩是否会再现?
3次闪崩史
比特币诞生于世界经济震荡之时。
2008年,全球金融危机爆发,市场避险情绪高涨。这一年的11月1日,一个自称中本聪(Satoshi Nakamoto)的人在P2P foundation网站上发布了比特币白皮书《比特币:一种点对点的电子现金系统》,陈述了他对加密电子货币的新设想。
2009年1月3日,中本聪在位于芬兰赫尔辛基的一个小型服务器上,亲手创建了第一个区块――即比特币的创世区块(Genesis Block),并获得了系统自动产生的第一笔50枚比特币的奖励,首枚比特币就此问世。
比特币诞生之时,价格还不到1美分,1美元可以兑换1300个比特币,此后一年内也不过涨了几美分。
2010年7月,比特币第一次被新闻网站Slashdot报道。这篇文章首次提及比特币项目,大量科技爱好者由此开始关注这个新鲜的概念。
2011年2月10日,投资者的浓厚兴趣将比特币的价格推升至1美元,当日也因此被称为“美元平价日”。
这种价格推进模式被延续了下来:数字货币技术及其基础设施的进步会推动价格上涨,价格被推高后又会助长下一步的泡沫。
第一个真正疯狂的比特币泡沫始于2011年6月1日。彼时,新闻网站Gawker发表文章《暗网丝绸之路》(The Darkweb Market Silk Road),讲述了如何在一个暗网上使用比特币购买非法药物。加上多家比特币交易所业已开业,购买比特币的门槛大大降低。短短一周内,比特币从10美元上涨至近30美元,但比特币价格在随后几个月发生暴跌,最低至2.14美元。
几年后,比特币又一次猛增至临界点,在2013年11月末突破1000美元,最高至1127.45美元。然而好景不长,到12月中旬,比特币的价格暴跌了近50%。这轮泡沫最显著的特点是跌幅较为平缓但持续时间长:随后一年多里,比特币价格降至172.15美元,并维持这种僵局长达数年之久。
2017年2月,比特币迎来了它最疯狂、最残酷的泡沫时期,甚至因此被称为“黑寡妇(the widowmaker)”。
比特币价格历史走势图
这场疯狂的始作俑者并不是比特币,而是其他新兴的加密货币。当年的ICO政策(首次公开募币,源自股票市场的首次公开发行概念,是区块链项目首次发行代币,募集比特币、以太坊等通用数字货币的行为)第一次允许加密货币创始人向市场直接出售自己的新产品,直接引发了一种空前的投机狂热。
市场各式投机心态相互助涨,“FOMO”(“害怕错失良机”)的心态盛行,比特币的大涨出现显然受益于这种狂潮。然而,随着更多其他加密货币的出现,比特币的主导地位也随之消失,其在加密货币领域的市场份额大幅下降。
2017年12月7日,比特币价格达到了20052美元,创当时历史新高,然而在当天之后,它的市场份额却自九月以来首次跌破了50%。
2017年12月19号,比特币市场份额跌至48.26%,直到次年的1月中旬,比特币的市场份额都在持续下滑,最终在2018年1月13号达到了仅占32.45%的历史最低点。
比特币的价格也在一路暴跌。2018 年的 12 月 15 日,比特币单价仅3194美元,创一年来最低,整体市值566亿美元,与2017年市值最高点3265亿美元相比,蒸发了2699亿美元。
当然,其他加密货币的暴跌更为惨烈。据报道,日本科技巨头、软银集团(SoftBank)创始人孙正义在2017年这场加密货币泡沫中损失了1.3亿美元。
在此之后,ICO行为被美国证券交易委员会(U.S. Securities and Exchange Commission)认定为非法证券发行而遭到取缔。
是喜是忧?
一度沉寂的比特币,为何再度“沸腾”起来?从外部环境来看,比特币这波暴涨,主要与全球避险情绪有关;从内部发展来看,此次比特币的暴涨与以往的泡沫时期有所不同。
受新冠肺炎疫情影响,2020年以来,全球经济遭遇重创,多国采取超常规货币宽松政策拯救经济,全球通胀预期增强。在高通胀、低增长、负利率的经济环境下,投资者和机构对避险资产的需求大大提升。而基于区块链技术的比特币,具有去中心化、总量有限、可追溯的特点,被认为可以有效避免通货膨胀,受到青睐。
经历过比特币大起大落的“币场老手”们普遍表示,当下比特币的暴涨与以往泡沫有所不同。ICO禁令有效规避了比也比相关的诈骗行为;新冠疫情引发的通胀对冲则增强了比特币的避险属性;随着时代发展,监管机构和上市公司的存在也使加密货币市场更加安全。
2020年,黑天鹅事件频发,疫情加剧,经济受到重创,全球大放水,对美元信任度降低,全球进入零利率甚至是负利率时代。业内人士分析认为,在这种剧变环境中,比特币的稀缺性显得尤为突出。
2021年开年,比特币水涨船高,其抗通胀和价值存储功能得到了市场的进一步肯定。支持者认为,2020年的上涨逻辑仍然成立,后市的行情仍然可期。
在摩根大通最近的一份研报中,分析人士认为,从长远来看比特币可能会达到14.6万美元,但要达到这一价格,比特币的波动性必须大大降低。
而看空者则坚持认为比特币是泡沫,Rosenberg Research经济学家和策略师戴维·罗森伯格(David Rosenberg)表示,在这么短的时间内比特币的抛物线走势是非常不正常的。
当然,尽管比特币泡沫确实存在,但越来越多的人认识到,从长远来看它的投资仍然是有回报的。乐观者们认为比特币的波动史只是一段看着断断续续、实则在稳定追赶的历史。总的来说,比特币的投机性使它不可避免地带有高风险的特性,它的未来还需迎接种种考验。
扫二维码 领开户福利!
海量资讯、精准解读,尽在新浪财经APP
责任编辑:唐婧
文章关键词:
美元 比特币价格 比特币
我要反馈
相关专题:
比特币跌破33000美元 专题
APP专享直播
上一页下一页
1/10
热门推荐
收起
新浪财经公众号
24小时滚动播报最新的财经资讯和视频,更多粉丝福利扫描二维码关注(sinafinance)
相关新闻
加载中
点击加载更多
最近访问
我的自选
01/江苏常州车厘子价格腰斩 商家:但这是榴莲最贵的一年02/事关7亿持卡人:信用卡透支利率限制取消 如何影响用卡?03/月收入5000以下不该吃西贝?馒头、花卷都是19元一个04/纺织业外贸回暖的“烦恼”:忙得不可开交 但最后钱没赚到05/新能源车冬季续航缩水遭吐槽 特斯拉Model 3“一周至少充两次”06/多地加码布局新兴产业 新能源生物医药集成电路等成部署重点07/拼多多:解约发帖员工 源自发现该员工在匿名社区发布极端言论08/ZARA姊妹品牌大撤离 快时尚败在了“快”?09/去年12月CPI同比微涨0.2% 2020年全年CPI同比上涨2.5%10/拜登欲推数万亿美元新经济刺激计划,每人发放2000美元支票
01/抱团还是散伙?周末机构已经吵翻天02/军工股为何依旧值得拥有?分析团队给出三大理由03/私募理财净值一个月暴跌97%:中来股份“被迫踩雷” 最新回应04/午后名博看市:上证3587点得失意义重大05/固态电池大事件:续航超1000公里 蔚来发布150度电池包 概念股曝光06/史丹利、合力泰卷入前证监会稽查局局长贪腐案 低价突击入股07/【军工*陈显帆】春季行情有望持续,建议超配核心赛道优质企业08/2021年全国两会后全面推行注册制或可期09/又有A股要“买醉”:上一个暴拉12个涨停 ST亚星拟变身白酒股10/一块电池燃爆资本圈 美股龙头1个月狂飙13倍 哪些A股又要飞?
01/成都银行领跌银行板块背后:房地产贷款踩线 减值计提增三成02/万亿信用卡市场迎新规 银行是否会调整信用卡透支利率03/1月11日在售高收益银行理财产品04/寄语大资管丨华夏理财苑志宏:2021,资本市场新机遇05/理财课程割“韭菜” 小白求富梦一场06/数字人民币再探路:多“点”开花 消费场景不断拓展07/多条“野路子”被切断 民营银行走到十字路口08/今年或迎银行上市“大年” 开年A股过会第一单花落瑞丰农商行09/网上买菜莫名被开通“美团月付”逾期或影响个人征信10/加快银行理财子公司转型升级 建立投资导向机制
7X24小时
徐小明 凯恩斯 占豪 花荣 金鼎 wu2198 丁大卫 易宪容 叶荣添 沙黾农 冯矿伟 趋势之友 空空道人 股市风云 股海光头
任泽平
老艾:
会复制2017"漂亮50"行情吗?
花长春:
2021年“再通胀”会温和归来
诸建芳:
2021年中国出口能否乘胜逐北
张明:
疫情、猪周期与互金的故事
储晓明:
中国市场不缺资金但缺资本
交易提示
操盘必读
证券报
最新公告
限售解禁
数据中心
条件选股
券商评级
股价预测
板块行情
千股千评
个股诊断
大宗交易
财报查询
业绩预告
ETF期权
类余额宝
基金净值
基金对比
基金排名商品行情
外盘期货
商品持仓
现货报价
CFTC持仓
期指行情
期指持仓
期指研究
行业指数
权重股票
期货名人
专家坐堂
高清解盘
期货入门
各国国债
期市要闻
期货研究
机构评论
品种大全外汇计算器
人民币牌价
中间价
美元指数
直盘行情
所有行情
美元相关
人民币相关
交叉盘
拆借利率
货币分析
机构观点
经济数据
专家坐堂
分析师圈
国债收益率
全球滚动
CFTC持仓
比特币外汇计算器
黄金资讯
白银分析
实物金价
ETF持仓
黄金TD
白银TD
金银币
专家坐堂
基础知识
现货黄金
现货白银
现货铂金
现货钯金
高清解盘
黄金吧 白银吧
黄金分析
CFTC持仓
叶檀
凯恩斯
曹中铭
股民大张
宇辉战舰
股市风云
余岳桐
股海战神
郭一鸣
赵力行
概念爱好者:散伙拐点来了 跟错节奏问题很严重逍遥渔夫v:酒做双顶大跌 哪些中大盘股接棒张雅溥:抱团股的散伙饭不应如此难堪钱坤投资:两市成交再超万亿 高位个股出现分化东坡的美酒:一要防吓二要防杀 惊涛骇浪在后面张中秦:1月11日周一市场综述红茶品股:大盘上涨趋势还在 调整不必恐慌首山:大盘未见顶回调幅度有限(11日收评)北京股商_薛利峰:5日均线失守短期调整或将展开常长亭老师:别不听老人劝“风险是涨出来的”浩瀚慧鹰德999:周二短线震荡盘升老股民大张:冲高杀跌后能否跌出共振点
叶檀
凯恩斯
曹中铭
股民大张
宇辉战舰
股市风云
余岳桐
股海战神
郭一鸣
赵力行
概念爱好者:散伙拐点来了 跟错节奏问题很严重逍遥渔夫v:酒做双顶大跌 哪些中大盘股接棒张雅溥:抱团股的散伙饭不应如此难堪钱坤投资:两市成交再超万亿 高位个股出现分化东坡的美酒:一要防吓二要防杀 惊涛骇浪在后面张中秦:1月11日周一市场综述红茶品股:大盘上涨趋势还在 调整不必恐慌首山:大盘未见顶回调幅度有限(11日收评)北京股商_薛利峰:5日均线失守短期调整或将展开常长亭老师:别不听老人劝“风险是涨出来的”浩瀚慧鹰德999:周二短线震荡盘升老股民大张:冲高杀跌后能否跌出共振点
董明珠还能为格力奋战多久?|《至少一个小时》
梁建章:中国人口衰竭的速度前所未有
冷友斌回应网友质疑:说价格高 对飞鹤不公平!
王中军:我喜欢比较“江湖”一点的人
:券商开户专属通道:新客专享理财福利多多 彭恩泽:提前关注超跌中的机会 彭恩泽:“科技+新能源汽车”逆市迎赚钱行情 跑赢大盘的王者微博1:三个臭皮匠顶一个诸葛亮?能吗? 中国国际期货广州:油市激荡向上 沙特推波助澜 跑赢大盘的王者微博1:跌出了恐慌盘 猎杀黑马时间到了 悲情浮夸:建议近期逐步低吸业绩较好的超跌题材股 情久终腻的人:万亿长期资金“活水”注入 公募基金与外资成主力
01-13
三友联众
300932
-- 01-11
通用电梯
300931
4.31 01-11
新炬网络
605398
37.61 01-11
屹通新材
300930
13.11 01-11
中英科技
300936
30.39
团车网再度调低IPO募资额
君实生物赴港IPO:研发烧钱苏州龙杰核心工艺将被淘汰
三只松鼠:IPO仍在排队中IPO排队者:高新成通关密码
股市直播
图文直播间
视频直播间
新浪财经意见反馈留言板
电话:400-052-0066 欢迎批评指正
新浪简介|广告服务|About Sina
联系我们|招聘信息|通行证注册
产品答疑|网站律师|SINA English
Copyright © 1996-2021 SINA Corporation
All Rights Reserved 新浪公司 版权所有
新浪首页
语音播报
相关新闻
返回顶部
比特币(加密数字货币)_百度百科
加密数字货币)_百度百科 网页新闻贴吧知道网盘图片视频地图文库资讯采购百科百度首页登录注册进入词条全站搜索帮助首页秒懂百科特色百科知识专题加入百科百科团队权威合作下载百科APP个人中心比特币是一个多义词,请在下列义项上选择浏览(共4个义项)展开添加义项比特币播报讨论上传视频加密数字货币收藏查看我的收藏0有用+10比特币(Bitcoin)的概念最初由中本聪在2008年11月1日提出,并于2009年1月3日正式诞生。根据中本聪的思路设计发布的开源软件以及建构其上的P2P网络。比特币是一种P2P形式的数字货币 [42]。比特币的交易记录公开透明 [40]。点对点的传输意味着一个去中心化的支付系统。与大多数货币不同,比特币不依靠特定货币机构发行,它依据特定算法,通过大量的计算产生,比特币经济使用整个P2P网络中众多节点构成的分布式数据库来确认并记录所有的交易行为,并使用密码学的设计来确保货币流通各个环节安全性。P2P的去中心化特性与算法本身可以确保无法通过大量制造比特币来人为操控币值。基于密码学的设计可以使比特币只能被真实的拥有者转移或支付。这同样确保了货币所有权与流通交易的匿名性。比特币其总数量有限,该货币系统曾在4年内只有不超过1050万个,之后的总数量将被永久限制在2100万个。 [42]2024年3月5日,比特币触及68000美元,续刷2021年11月以来新高。 [107]3月8日晚间,比特币向上突破70000美元/枚,创历史新高。 [109]3月11日,比特币站上71000美元/枚,日内涨2.25%。 [110]最新新闻比特币突破73000美元/枚2024-03-13 15:143月13日,比特币突破73000美元/枚,日内涨2.77%。...详情内容来自中文名比特币外文名Bitcoin种 类加密数字货币、虚拟资产 [83]流通平台网络创始人中本聪缩 写BTC诞生时间2009年1月3日总 量2100万个 [7]最小单位“聪”(satoshi),1聪=0.00000001BTC [8]共识机制POW工作量证明底层技术区块链 [39]特 点总量有限、发行与交易去中心化、交易记录公开透明 [39]目录1发展历程2货币交易▪购买方法▪交易方式▪消费方式▪支付案例3创始人物4产生原理5货币特征6应用7法律现状8各方声音9危害风险10法定货币国家11比特币城市12慈善活动13多方监管▪中国▪美国▪韩国▪法国▪日本▪卢森堡发展历程播报编辑比特币(3张)2008年爆发全球金融危机,同年11月1日,一个自称中本聪(Satoshi Nakamoto)的人在P2P foundation网站上发布了比特币白皮书《比特币:一种点对点的电子现金系统》,陈述了他对电子货币的新设想——比特币就此面世。2009年1月3日,比特币创世区块诞生。和法定货币相比,比特币没有一个集中的发行方,而是由网络节点的计算生成,谁都有可能参与制造比特币,而且可以全世界流通,可以在任意一台接入互联网的电脑上买卖,不管身处何方,任何人都可以挖掘、购买、出售或收取比特币,并且在交易过程中外人无法辨认用户身份信息。2009年1月5日,不受央行和任何金融机构控制的比特币诞生。比特币是一种数字货币,由计算机生成的一串串复杂代码组成,新比特币通过预设的程序制造。每当比特币进入主流媒体的视野时,主流媒体总会请一些主流经济学家分析一下比特币。早先,这些分析总是集中在比特币是不是骗局。而现如今的分析总是集中在比特币能否成为未来的主流货币。而这其中争论的焦点又往往集中在比特币的通缩特性上。不少比特币玩家是被比特币的不能随意增发所吸引的。和比特币玩家的态度截然相反,经济学家们对比特币2100万固定总量的态度两极分化。凯恩斯学派的经济学家们认为政府应该积极调控货币总量,用货币政策的松紧来为经济适时的加油或者刹车。因此,他们认为比特币固定总量货币牺牲了可调控性,而且更糟糕的是将不可避免地导致通货紧缩,进而伤害整体经济。奥地利学派经济学家们的观点却截然相反,他们认为政府对货币的干预越少越好,货币总量的固定导致的通缩并没什么大不了的,甚至是社会进步的标志。比特币网络通过“挖矿”来生成新的比特币。所谓“挖矿”实质上是用计算机解决一项复杂的数学问题,来保证比特币网络分布式记账系统的一致性。比特币网络会自动调整数学问题的难度,让整个网络约每10分钟得到一个合格答案。随后比特币网络会新生成一定量的比特币作为区块奖励,奖励获得答案的人。2009年,比特币诞生的时候,区块奖励是50个比特币。诞生10分钟后,第一批50个比特币生成了,而此时的货币总量就是50。随后比特币就以约每10分钟50个的速度增长。当总量达到1050万时(2100万的50%),区块奖励减半为25个。当总量达到1575万(新产出525万,即1050的50%)时,区块奖励再减半为12.5个。该货币系统曾在4年内只有不超过1050万个,之后的总数量将被永久限制在约2100万个。 [7]比特币是一种虚拟货币,数量有限,但是可以用来套现:可以兑换成大多数国家的货币。你可以使用比特币购买一些虚拟的物品,比如网络游戏当中的衣服、帽子、装备等,只要有人接受,你也可以使用比特币购买现实生活当中的物品。2014年2月25日,“比特币中国”的比特币开盘价格为3562.41元,截至下午4点40分,价格已下跌至3185元,跌幅逾10%。根据该平台的历史行情数据显示,在2014年1月27日,1比特币还能兑换5032元人民币。这意味着,该平台上不到一个月,比特币价格已下跌了36.7%。同年9月9日,美国电商巨头eBay宣布,该公司旗下支付处理子公司Braintree将开始接受比特币支付。该公司已与比特币交易平台Coinbase达成合作,开始接受这种相对较新的支付手段。虽然eBay市场交易平台和PayPal业务还不接受比特币支付,但旅行房屋租赁社区Airbnb和租车服务Uber等Braintree客户将可开始接受这种虚拟货币。Braintree的主要业务是面向企业提供支付处理软件,该公司在2013年被eBay以大约8亿美元的价格收购。2017年1月22日晚间,火币网、比特币中国与OKCoin币行相继在各自官网发布公告称,为进一步抑制投机,防止价格剧烈波动,各平台将于1月24日中午12:00起开始收取交易服务费,服务费按成交金额的0.2%固定费率收取,且主动成交和被动成交费率一致。 [9]5月5日,OKCoin币行网的最新数据显示,比特币的价格刚刚再度刷新历史,截止发稿前最高触及9222元人民币高位。1月24日中午12:00起,中国三大比特币平台正式开始收取交易费。9月4日,央行等七部委发公告称中国禁止虚拟货币交易。同年12月17日,比特币达到历史最高价19850美元。2018年11月25日,比特币跌破4000美元大关,后稳定在3000多美元。 [10]11月19日,加密货币恢复跌势,比特币自2017年10月以来首次下探5000美元大关,原因是之前BCH出现硬分叉,且监管部门对首次代币发行(ICO)加强了审查。 [10]11月21日凌晨4点半,coinbase平台比特币报价跌破4100美元,创下了13个月以来的新低。2019年4月,比特币再次突破5000美元大关,创年内新高。5月12日,比特币近八个月来首次突破7000美元。 [11]5月14日,据coinmarketcap报价显示,比特币站上8000美元,24小时内上涨14.68%。 [12]6月22日 ,比特币价格突破10000美元大关。比特币价格在10200左右震荡,24小时涨幅近7%。 [13]6月26日,比特币价格一举突破12000美元,创下自2018年1月来近17个月高点。 [14]6月27日早间,比特币价格一度接近14000美元,再创年内新高。 [15]2020年2月10日,比特币突破了一万美元。据交易数据,比特币的价格涨幅突破3% [16]。3月12日,据加密货币交易平台Bitstamp数据显示,19点44分,比特币最低价格已跌至5731美元 [17]。5月8日,比特币突破10000美元关口,创下2月份以来的新高 [18]。5月10日早上8点开始,比特币单价在半小时内从9500美元价位瞬间下跌了上千美元,最低价格跌破8200美元,最高价差超1400美元 [19]。7月26日下午6点,比特币短时极速拉升,最高触及10150.15USDT,日内最大涨幅超过4%,这是2020年6月2日以来首次突破1万美元关口 [20]。11月4日,比特币价格正式突破14000美元。11月12日晚,比特币价格突破16000美元,刷新2018年1月以来新高,一周涨超8.6%。比特币总市值突破2915亿美元。11月18日,比特币价格突破17000美元 [21]。12月1日,比特币价格报19455.31美元,24小时涨幅为5.05%。 [22]12月17日,比特币价格突破23000美元整数关口,刷新历史新高,日内涨幅超7.5%。 [23]截至12月27日19时20分,比特币报价28273.06美元。 [24]2021年1月8日,比特币涨至4万美元关口上方,最高至40402美元。 [25]2月16日,比特币再创历史新高,升至50000美元/枚上方。 [1]2月17日,据法新社伦敦消息,在一些重量级企业支持比特币后,这一虚拟货币在2021年升值近75%之后于当地时间16日首次突破5万美元大关。大约在格林尼治时间12时35分,比特币较前一日升值4.4%,达到50547.70美元的历史新高。2021年2月16日,比特币价格突破50000美元。 [1]2021年2月20日,比特币总市值突破1万亿美元大关。 [2-3]2021年2月22日,比特币价格线上突破58000美元/枚。 [4-5]2021年2月22日晚间,受做空资金反扑,比特币跌幅扩大,盘中一度跌破48000美元/枚,跌幅扩大至近17%。随后,多头资金迅速开始抄底,在半个小时内,比特币跌幅从17%回到6%。CoinGecko行情显示,截至北京时间2月23日0时左右,比特币报52878.42美元/枚,目前24小时跌幅达9%。 [6]3月3日,比特币日内涨超5%,站上51000美元/枚。 [29]3月13日,比特币24小时上涨约6%,站上60000美元/枚,市值约为1.1万亿美元。 [30]2021年5月19日,比特币跌幅扩大至18%,跌破35000美元/枚整数关口,日内连续跌破九道千元关口。 [31]2021年6月,萨尔瓦多通过《萨尔瓦多比特币法》法案,法案指出比特币在该国成为法定货币、并于政府公报上公布九十天后生效。 [33]9月7日,法案生效、比特币正式成为了萨尔瓦多的法定货币,成为世界上第一个赋予数字货币法定地位的国家。 [33] [37]2021年9月24日,中国人民银行发布进一步防范和处置虚拟货币交易炒作风险的通知。通知指出,虚拟货币不具有与法定货币等同的法律地位。 [38]2021年10月,比特币重回50000美元/枚关口上方,创9月7日以来新高。 [41]截至10月20日,比特币时隔半年再创历史新高,涨破65000美元/枚,日内涨1.16%。 [43]2021年11月9日盘中,比特币再创历史新高,首次突破67000美元/枚。 [44]11月9日,Bitstamp平台报价显示,比特币达到68065.30美元/枚,而在过去24小时之内,最高曾达到68564.40美元/枚。 [46]11月13日,比特币市值超过了脸书和腾讯,挤进了世界前五。11月10日,比特币价格再创历史新高,首次逼近6.9万美元/枚。 [45]2022年1月,比特币周五继续下跌,跌破42000美元,触及2021年9月以来未见水平。 [54]2022年1月22日晚间,比特币日内一度跌破36000美元/枚,最大跌幅12.8%。 [57]2022年1月25日,据法新社华盛顿报道,国际货币基金组织(IMF)周二呼吁萨尔瓦多改变政策,停止使用比特币作为法定货币,理由是这种加密货币构成“巨大风险”。2022年2月,美国司法部宣布,查获价值约36亿美元的失窃比特币,并以涉嫌洗钱罪名逮捕了一对夫妇。 [58]2022年2月,比特币一度跌破35000美元,随着俄罗斯和乌克兰之间的紧张局势加剧,打压风险偏好,提振避险需求,金价突破每盎司1940美元。 [59]2022年3月1日,据彭博社报道,美国财政部发布新规,禁止美国人向俄罗斯寡头和实体提供任何支持,包括通过使用数字货币或加密资产进行交易,该规则于3月1日生效。在新规发布的同一天,比特币价格短线拉升,从41800美元左右直接飙升至44000美元附近,24小时涨幅超14%。 [60]2022年3月24日,俄罗斯国家杜马能源委员会主席帕维尔·扎瓦尔尼(Pavel Zavalny)在新闻发布会上表示,俄罗斯愿意接受比特币作为其自然资源出口的支付方式。 [62]2022年3月25日,面对西方国家不断加大的制裁,俄罗斯正在考虑接受比特币作为其石油和天然气出口的支付方式。 [63]每经AI快讯,比特币站上47000美元/枚,为2022年1月4日以来首次。 [64]2022年3月,环保组织发起倡议,要求比特币改变其生产方式,减少其生产所带来的巨大耗电量。据悉,比特币的年耗电量比瑞典整个国家的年用电量还要高。比特币的主要竞争对手以太坊已经准备采用一种更环保低耗的生产方式,环保人士认为,比特币也需做出改变。 [65]北京时间2022年4月12日,加密货币市场迎来一次回撤。行情数据显示,比特币24 小时内下跌 15%,最新报价为39682美元,自3月15日以来首次跌破 40,000 美元。与此同时,以太坊下跌 14%,最新报价为2969美元,自3月23 日以来首次跌破 3,000 美元大关。 [67]2022年5月27日,特斯拉CEO埃隆·马斯克表示,特斯拉的周边产品可以用狗狗币购买。 [69]9月,比特币一度上涨6.1%,价格突破2万美元关口。 [75]2022年6月13日,最新行情数据显示,比特币报价短时触及25000美元一枚,并在该点位进行来回绞杀,24小时跌幅已达到7.4%,创下2020年12月26日以来的最低点。 [70]2022年6月14日,最新行情数据显示,比特币价格短时跌破21000美元,最低触及20846美元,创2020年12月16日以来的最低点。 [71]2022年6月19日,据Bitstamp报价显示,比特币再次下破18000美元/枚,过去7天累计下跌36%,今年以来累计下跌62%。 [72]2022年6月30日,据Bitstamp报价显示,比特币跌破19000美元/枚。 [73]2022年7月13日的研报中表示,比特币的生产成本已从6月初的约24000美元降至现在的约13000美元。 [74]2023年2月2日报道,比特币突破24000美元/枚,续刷前期新高。 [76]2023年2月,国际货币基金组织就各国应如何对待加密资产制定了一项九点行动计划,其中最重要的一点是“通过加强货币政策框架来维护货币的主权和稳定,不授予比特币等加密货币官方或法定货币地位”。 [77]2023年7月,glassnode发推称,比特币长期持有者持有1452万枚BTC,已达历史新高,相当于BTC流通供应量的75%。 [82]2023年8月17日,比特币回落至29000美元/枚下方,为8月7日以来首次,24小时内跌0.58%。 [84]2023年9月,比特币跌破25000美元/枚,日内跌逾3%。 [85]10月24日,比特币涨破35000美元/枚,日内涨近14%。 [86]2023年11月,行情显示,BTC突破38000美元/枚,现报38023.4美元/枚,24小时内涨近8%。 [87]2023年11月30日,比特币突破38000美元/枚,日内涨0.7%。 [93]2024年1月3日,比特币快速下挫,一度跌超10%,跌破41000美元。 [95]1月10日,美国证券交易委员会首次批准直接投资比特币的交易基金,但并未批准或认可比特币 [96]。1月20日消息,比特币升至42000美元/枚。 [97]1月30日消息,比特币向上突破43000美元/枚。 [98]2月9日,比特币向上突破47000美元/枚,日内涨3.64%。 [99]2月14日,比特币向上突破52000美元/枚,日内涨超6%。 [100]2月27日消息,比特币突破57000美元/枚,日内涨4.36% [101]。2月28日,比特币突破58000美元/枚,续刷2021年12月以来新高,日内涨2.35%。 [102]同日,比特币上触59000美元/枚,续刷2021年12月以来新高,日内涨4.12%。 [103]2月29日,比特币突破64000美元/枚,续刷2021年11月以来新高;日内涨13%,本月迄今大涨近50%。 [104]2024年3月,比特币持续走高,日内涨近5%触及65000美元,创2021年11月以来新高。 [102] [104-105]3月4日,比特币向上触及66000美元,续刷2021年11月以来新高。 [106]3月5日,比特币触及68000美元,续刷2021年11月以来新高。 [107]3月5日晚,比特币涨破69000美元/枚,创历史新高,累涨62.64%。 [108]3月8日晚间,比特币向上突破70000美元/枚,创历史新高。 [109]货币交易播报编辑购买方法比特币用户可以买到比特币,同时还可以使用计算机依照算法进行大量的运算来“开采”比特币。在用户“开采”比特币时,需要用电脑搜寻64位的数字就行,然后通过反复解谜密与其他淘金者相互竞争,为比特币网络提供所需的数字,如果用户的电脑成功地创造出一组数字,那么就将会获得25个比特币。由于比特币系统采用了分散化编程,所以在每10分钟内只能获得25个比特币,而到2140年,流通的比特币上限将会达到2100万。换句话说,比特币系统是能够实现自给自足的,通过编码来抵御通胀,并防止他人对这些代码进行破坏。交易方式比特币是类似电子邮件的电子现金,交易双方需要类似电子邮箱的“比特币钱包”和类似电邮地址的“比特币地址”。和收发电子邮件一样,汇款方通过电脑或智能手机,按收款方地址将比特币直接付给对方。下列表格,列出了免费下载比特币钱包和地址的部分网站。比特币地址是大约33位长的、由字母和数字构成的一串字符,总是由1或者3开头,例如火币"1PCgrJSzxJTjtUUbijcvPjZ6FVS2jGeZnN"。比特币软件可以自动生成地址,生成地址时也不需要联网交换信息,可以离线进行。可用的比特币地址非常多。比特币地址和私钥是成对出现的,他们的关系就像银行卡号和密码。比特币地址就像银行卡号一样用来记录你在该地址上存有多少比特币。你可以随意的生成比特币地址来存放比特币。每个比特币地址在生成时,都会有一个相对应的该地址的私钥被生成出来。这个私钥可以证明你对该地址上的比特币具有所有权。我们可以简单的把比特币地址理解成为银行卡号,该地址的私钥理解成为所对应银行卡号的密码。只有你在知道银行密码的情况下才能使用银行卡号上的钱。所以,在使用比特币钱包时请保存好你的地址和私钥。比特币的交易数据被打包到一个“数据块”或“区块”(block)中后,交易就算初步确认了。当区块链接到前一个区块之后,交易会得到进一步的确认。在连续得到6个区块确认之后,这笔交易基本上就不可逆转地得到确认了。比特币对等网络将所有的交易历史都储存在“区块链”(blockchain)中。区块链在持续延长,而且新区块一旦加入到区块链中,就不会再被移走。区块链实际上是一群分散的用户端节点,并由所有参与者组成的分布式数据库,是对所有比特币交易历史的记录 。 中本聪预计,当数据量增大之后,用户端希望这些数据并不全部储存自己的节点中。为了实现这一目标,他采用引入散列函数机制。这样用户端将能够自动剔除掉那些自己永远用不到的部分,比方说极为早期的一些比特币交易记录。消费方式许多面向科技玩家的网站,已经开始接受比特币交易。比如火币、币安、OKEx之类的网站,以及淘宝某些商店,甚至能接受比特币兑换美元、欧元等服务。毫无疑问,比特币已经成为真正的流通货币,而非腾讯Q币那样的虚拟货币。国外已经有专门的比特币第三方支付公司,类似国内的支付宝,可以提供API接口服务。可以用钱来买比特币,也可以当采矿者,“开采”它们用电脑搜寻64位的数字就行。通过用电脑反复解密,与其他的淘金者竞争,为比特币网络提供所需的数字。如果电脑能够成功地创造出一组数字,就会获得12.5个比特币。比特币是分散化的,需要在每个单位计算时间内创造固定数量比特币是每10分钟内可获得12.5个比特币。到2140年,流通的比特币上限将达到2100万个。换句话说,比特币体制是可以自给自足的,译成编码可抵御通胀,防止他人搞破坏。支付案例在被投资者疯狂追逐的同时,比特币已经在现实中被个别商家接受。北京一家餐馆开启了比特币支付。这家位于朝阳大悦城的餐馆称,该店从2013年11月底开始接受比特币支付。消费者在用餐结束时,把一定数量的比特币转账到该店账户,即可完成支付,整个过程类似于银行转账。该餐馆曾以0.13个比特币结算了一笔650元的餐费。2014年1月,Overstock开始接受比特币,成为首家接受比特币的大型网络零售商。2017年虚拟货币资料货币符号发行时间创始人活跃市值比特币基础算法比特币BTC2009中本聪是2000亿美元是SHA-256以太币ETH2014维塔利克·布特林是320亿美元否Ethash瑞波币XRP2013克里斯·拉森是170亿美元是SHA-256柚子币EOS2017丹尼尔·拉里默是55亿美元否DPOS莱特币LTC2011李启威是75亿美元是Scrypt比特币现金BCH2017吴忌寒是75亿美元是SHA-256“世界首台”比特币自动提款机2013年10月29日在加拿大温哥华启用,办理加拿大元与比特币的兑换,迅速迎来排队办理业务的人群。“世界首台”这台自动提款机由美国机器货币公司制造,设在温哥华一家名为“潮流”的咖啡屋。提款机所有者之一名为米切尔·德米特,他从事比特币交易数年,另外两名高中同学合伙成立了一家比特币交易公司。德米特说,这是世界首台比特币提款机。德米特和同伴都认为比特币提款机是商机,因为此前“没有比特币自动提款机,大家都是在网站上进行交易”。操作时,比特币用户输入类似银行PIN码的密码,登录网络比特币账户。通过提款机,用户可以从比特币账户中取出按比值对应的加拿大元现金,也可将现金存入比特币账户。比特币用户只需一部智能手机,就可以使用比特币,与网络购物形式相似。缺乏监管但一些人担心比特币成为毒品交易、洗钱和其他不法活动的温床。一个名为“丝绸之路”的网站为不法分子以比特币交易搭建平台,本月初被美国当局关闭。美国警方2013年10月25日说,他们在这家网站站主罗斯·威廉·乌布利希的电脑里发现价值280万美元的比特币。路透社报道,这家网站2011年起运营,为不法分子搭建交易平台。网站有海洛因和其他毒品售卖,甚至提供杀手。超过90万名该网站注册用户用比特币进行毒品交易。法庭文件显示,这家网站在两年运营时间里达成价值12亿美元的比特币交易,每笔交易收取8%到15%的手续费。法新社报道,比特币尚未在任何国家和地区受到有效监管。德国是世界上第一个承认比特币为“私人货币”的国家。创始人物播报编辑京都大学数学教授望月新一2008年11月1日,一个自称中本聪(Satoshi Nakamoto)的人在P2P foundation网站上发布了比特币白皮书《比特币:一种点对点的电子现金系统》,陈述了他对电子货币的新设想——比特币就此面世。2009年1月3日,比特币创世区块诞生。比特币用分布式账本摆脱了第三方机构的制约,中本聪称之为“区块链”。用户乐于奉献出CPU的运算能力,运转一个特别的软件来做一名“挖矿工”,这会构成一个网络共同来保持“区域链”。这个过程中,他们也会生成新货币。买卖也在这个网络上延伸,运转这个软件的电脑争相破解不可逆暗码难题,这些难题包含好几个买卖数据。第一个处理难题的“矿工”会得到50比特币奖赏,相关买卖区域加入链条。跟着“矿工”数量的添加,每个迷题的艰难程度也随之进步,这使每个买卖区的比特币生产率保持约在10分钟一枚。2009年,中本聪设计出了一种数字货币,即比特币,风风火火的比特币市场起了又落,而其创始人“中本聪”的身份一直都是个谜,关于“比特币之父”的传闻牵涉到从美国国家安全局到金融专家,也给比特币罩上了神秘光环。据外媒报道称,计算机科学家TedNelson周日在网络上发布视频称,他已经确定出,比特币的创始人是京都大学数学教授望月新一(Shinichi Mochizuki)。比特币的创始人一直以来使用的都是中本聪(Satoshi Nakamoto)的假名,互联网领域也对其真实身份展开了大量推测。纳尔逊发布视频称,他已确定望月新一就是比特币的真正创始人。望月新一2013年因为证明ABC猜想而名声大噪。他高中时就读于菲利普埃克塞特学院,后者是美国最具声望的高中之一,仅仅两年后就毕业。望月新一16岁进入美国普林斯顿大学,22岁时以博士身份离校,33岁就成为正教授,这么年轻就获得正教授职称在学术界极为罕见。这个数学界的巨星可能已经攻破了该领域最为重要的难题之一。中本聪本人在互联网上留下的个人资料很少,尤其是近年几乎完全销声匿迹,因此其身世也变成了一个迷。2014年3月7日,当有人说比特币创始人是多利安·中本的新闻传出后,迅速成为互联网上最吸引人的消息。与外界揣测其可能是个虚构的名字不同,“中本聪”是个真实的名字,他是一名64岁的日裔美国人,他喜欢收集火车模型,曾供职大企业和美国军方,从事机密工作。在过去的40年中,中本聪从不在生活中用他的真名。根据美国洛杉矶地方法院1973年的档案,在他23岁从加州州立理工大学毕业时,将自己的名字改为了多利安·普伦蒂斯·中本聪(Dorian Prentice Satoshi Nakamoto)。从那时起,他不再使用“聪”这个名字,而用多利安·中本S(Dorian S. Nakamoto)作为签名。也是在2014年,真正的发明人中本聪在网上发言否认:“我不是多利安·中本。”产生原理播报编辑疯狂涨势比特币是由系统自动生成一定数量的比特币作为矿工奖励来完成发行过程的。矿工在这里充当了货币发行方的角色,他们获得比特币的过程又称为“挖矿“。所有的比特币交易都需要通过矿工挖矿并记录在这个账本中。矿工挖矿实际上就是通过一系列算法,计算出符合要求的哈希值,从而争取到记账权。这个过程实际上就是试错的过程,一台计算机每秒产生的随机哈希碰撞次数越多,先计算出正确哈希值的概率就越大。最先计算出正确数值的矿工可以将比特币交易打包成一个区块,然后记录在整个区块链上,从而获得相应的比特币奖励。这就是比特币的发行过程,同时它也激励着矿工维护区块链的安全性和不可篡改性。设计者在设计比特币之初就将其总量设定为2100万枚。最开始每个争取到记账权的矿工都可以获得50枚比特币作为奖励,之后每4年减半一次。预计到2140年,比特币将无法再继续细分,从而完成所有货币的发行,之后不再增加。 [35]货币特征播报编辑分类特征去中心化比特币是第一种分布式的虚拟货币,整个网络由用户构成,没有中央银行。去中心化是比特币安全与自由的保证 。全世界流通比特币可以在任意一台接入互联网的电脑上管理。不管身处何方,任何人都可以挖掘、购买、出售或收取比特币。专属所有权操控比特币需要私钥,它可以被隔离保存在任何存储介质。除了用户自己之外无人可以获取。低交易费用可以免费汇出比特币,但最终对每笔交易将收取约1比特分的交易费以确保交易更快执行。无隐藏成本作为由A到B的支付手段,比特币没有繁琐的额度与手续限制。知道对方比特币地址就可以进行支付。跨平台挖掘用户可以在众多平台上发掘不同硬件的计算能力。优点完全去处中心化,没有发行机构,也就不可能操纵发行数量其发行与流通,是通过开源的P2P算法实现。匿名、免税、免监管。比特币完全依赖P2P网络,无发行中心,所以外部无法关闭它。比特币价格可能波动、崩盘,多国政府可能宣布它非法,但比特币和比特币庞大的P2P网络不会消失。健壮性无国界、跨境跨国汇款,会经过层层外汇管制机构,而且交易记录会被多方记录在案。但如果用比特币交易,直接输入数字地址,点一下鼠标,等待P2P网络确认交易后,大量资金就过去了。不经过任何管控机构,也不会留下任何跨境交易记录。山寨者难于生存由于比特币算法是完全开源的,谁都可以下载到源码,修改些参数,重新编译下,就能创造一种新的P2P货币。但这些山寨货币很脆弱,极易遭到51%攻击。任何个人或组织,只要控制一种P2P货币网络51%的运算能力,就可以随意操纵交易、币值,这会对P2P货币构成毁灭性打击。很多山寨币,就是死在了这一环节上。而比特币网络已经足够健壮,想要控制比特币网络51%的运算力,所需要的CPU/GPU数量将是一个天文数字。缺点交易平台的脆弱性比特币网络很健壮,但比特币交易平台很脆弱。交易平台通常是一个网站,而网站会遭到黑客攻击,或者遭到主管部门的关闭。交易确认时间长比特币钱包初次安装时,会消耗大量时间下载历史交易数据块。而比特币交易时,为了确认数据准确性,会消耗一些时间,与P2P网络进行交互,得到全网确认后,交易才算完成。价格波动极大由于大量炒家介入,导致比特币兑换现金的价格如过山车一般起伏。使得比特币更适合投机,而不是匿名交易。大众对原理不理解,以及传统金融从业人员的抵制。活跃网民了解P2P网络的原理,知道比特币无法人为操纵和控制。但大众并不理解,很多人甚至无法分清比特币和Q币的区别。“没有发行者”是比特币的优点,但在传统金融从业人员看来,“没有发行者”的货币毫无价值。应用播报编辑新型投资品2010年4月比特币第一次公开交易起,按当前最新交易价格450美元计算,比特币的市值在4年间上涨了15000倍。2013年始,比特币的价格突然一路飙升,一度突破7000元人民币。伴随着这一现象的是大量比特币被作为贮藏手段保存,这会加深人们对它的偏见。相对于支付手段和货币其他职能,比特币似乎更被当作了一款投机产品。 [88]比特币消费比特币是一种虚拟货币,可以兑换成大多数国家的货币,可以使用比特币购买虚拟物品,比如网络游戏当中的衣服、帽子、装备等,只要有人接受,也可以使用比特币购买现实生活中的物品。 [89]法律现状播报编辑德国:2013年6月底,德国议会决定持有比特币一年以上将予以免税后,比特币被德国财政部认定为“记账单位”,这意味着比特币在德国已被视为合法货币,并且可以用来交税和从事贸易活动。日本:2017年,日本政府称比特币是一种合法的支付方式。巴基斯坦:2022年1月12日,印度报业托拉斯消息,据巴基斯坦SAMAA电视台报道,根据在有关数字货币的案件听证会上提交给信德省高等法院(SHC)的报告,巴基斯坦国家银行和联邦政府已经决定禁止使用所有加密货币。 [55]新加坡:2022年1月19日路透社报道,由于新加坡金管局(MAS)限制加密货币的消费者广告,为数字代币交易提供便利平台的加密货币自动取款机(ATM)正在新加坡下线。加密货币ATM使用户可以用法定货币或政府发行的货币交易比特币和以太币等数字支付代币。 [56]泰国:2022年3月23日,《联合早报》消息,泰国将禁止使用加密货币作为商品和服务的支付方式,并称数码资产的广泛使用威胁到国家的金融体系和经济。 [61]印尼:2022年4月,据路透报道,印尼一位税务官员表示,在数字资产交易蓬勃发展的情况下,印尼计划从5月1日起对加密资产交易征收增值税,对此类投资的资本利得征收各0.1%的所得税。 [66]美国:2023年5月,美国CFTC主席Rostin Behnam表示, 比特币和以太坊是商品,BTC和ETH期货在交易所上市是”市场驱动的”,并以法律分析为理由。此外,Behnam抨击了SEC的加密货币监管方法,Behnam称,我非常强烈反对执法监管。俄罗斯:2022年3月24日,俄罗斯国家杜马能源委员会主席扎瓦尔尼表示,面对西方国家不断扩大制裁范围,俄罗斯正在考虑接受比特币作为其石油和天然气出口的支付方式 [78]。中国:在中国,《人民币管理条例》规定,禁止制作和发售代币票券。由于代币票券的定义并没有明确的司法解释,如果比特币被纳入到“代币票券”中,则比特币在中国的法律前景面临不确定性。文化部、商务部关于加强网络游戏虚拟货币管理工作的通知(文市发〔2009〕20号)二〇〇九年六月四日 《通知》称首次明确了网络游戏虚拟货币的适用范围,对当前网络游戏虚拟货币与游戏内的虚拟道具做了区分;同时,通知称,《通知》规定从事相关服务的企业需批准后方可经营。在中国,部分淘宝的店铺也开始接受了比特币的使用,商家会逐渐增加。2013年10月,第一本比特币季刊《壹比特》创刊号发行。2013年10月15日,百度旗下百度加速乐服务宣布支持比特币。2013年10月26日,BTCMini报道了GBL被黑内幕。2013年10月31日,著名互联网律师雷腾发文建议《尽快立案调查GBL比特币交易平台关闭》事件,分析了比特币具有的“价值功能”和“使用功能”,比特币应受相关法律管辖。2013年12月5日,《中国人民银行 工业和信息化部 中国银行业监督管理委员会 中国证券监督管理委员会 中国保险监督管理委员会关于防范比特币风险的通知》:比特币是一种特定的虚拟商品;比特币交易作为一种互联网上的商品买卖行为,普通民众在自担风险的前提下,拥有参与的自由。 [26]2017年9月4日,《中国人民银行 中央网信办 工业和信息化部 工商总局 银监会 证监会 保监会关于防范代币发行融资风险的公告》:禁止从事代币发行融资活动(ICO);交易平台不得从事法定货币与代币、“虚拟货币”相互之间的兑换业务,不得买卖或作为中央对手方买卖代币或“虚拟货币”,不得为代币或“虚拟货币”提供定价、信息中介等服务。 [27]2018年11月2日,中国人民银行发布《中国金融稳定报告2018》专题十二讲到“加密资产”。2021年6月21日,中国人民银行有关部门就银行和支付机构为虚拟货币交易炒作提供服务问题,约谈了多家银行和支付机构,禁止使用机构服务开展虚拟货币交易。 [34]2021年9月24日,中国人民银行发布进一步防范和处置虚拟货币交易炒作风险的通知。通知指出,虚拟货币不具有与法定货币等同的法律地位。比特币、以太币、泰达币等虚拟货币具有非货币当局发行、使用加密技术及分布式账户或类似技术、以数字化形式存在等主要特点,不具有法偿性,不应且不能作为货币在市场上流通使用 [38]。在2021年10月25日,北京市东城区人民法院对首例比特币“挖矿”委托合同纠纷案件进行宣判,双方当事人服判息诉。该案适用民法典第九条“绿色原则”,认定比特币“挖矿”系资源消耗巨大、不利于“双碳”目标实现的风险投资活动,违背公序良俗,法院最终判定合同无效,损失自担。 [50]2023年3月,《中国检察官》杂志(司法实务版)发文:虚拟货币属于刑法上的“财物” 应予以保护,文章指出:虚拟货币作为一种特殊的虚拟财产,符合“财物”特征,应当评价为刑法上的财产犯罪对象。国家对虚拟货币相关业务活动采取了更加严格的管控政策,否定了虚拟货币的“货币”属性,但从未否定虚拟货币的“财物”属性。民事法律行为效力判断和认定标准与刑法保护“财物”的判断认定标准并无理论关联,涉虚拟货币合同有效与否,并不能作为否定虚拟货币刑法上“财物”属性的依据,刑事领域肯定虚拟货币的“财物”属性,并不违背法秩序统一性。 [81]中国香港:2022年10月31日,香港特区政府正式发表《有关虚拟资产在港发展的政策宣言》。在此之前,港区政府曾表明要成为全球虚拟资产中心。 [83]2023年2月20日,香港证券及期货事务监察委员会(证监会)提出一项计划,以允许零售投资者交易比特币和以太币等数字代币。香港证监会在一份咨询文件中表示,建议允许零售投资者在证监会许可的交易所交易大市值代币,前提是知识测试、风险承受能力评估和合理的风险敞口限制等保障措施到位 [80]。2023年6月1日,香港证监会《适用于虚拟资产交易平台营运者的指引》生效,《指引》订明多项适用于持牌交易平台的标准和规定,包括稳妥保管资产、分隔客户资产、避免利益冲突及网络保安。 [83]各方声音播报编辑正面比特币目前进入模糊期,理性、强化货币性,将让比特币获得良性发展(2014年10月 人民网评)2014年博鳌亚洲论坛在海南博鳌召开,中国人民银行行长周小川先生在对话《央行的未来》中表示,比特币像是一种能够交易的资产,不太像支付货币,比如过去有人集邮,上面也写着价钱,但是他主要是收藏品,作为资产来作为交易,并不是支付性的货币 [79]。2015年11月,拥有诺贝尔奖提名资质的美国加州大学洛杉矶分校金融学教授巴格万·乔德里(Bhagwan Chowdhry)公开表示,将比特币的缔造者“中本聪”推荐给诺贝尔经济学奖的评审团队,在他心目中比特币对经济体系造成了巨大的颠覆式的影响。 [49]巴格万·乔德里说。“中本聪的贡献将会彻底改变我们对金钱的思考方式,很可能会颠覆央行在货币政策方面所扮演的角色,并且将会破坏如西联这样高成本汇款的服务,彻底消除如Visa、MasterCard和Paypal他们收取2%-4%的中间人交易税,消除费事且昂贵的公证和中介服务,事实上它将彻底改变法律合约的方式。” [49]负面货币只是数据,让我们免于物物交换的不便。该数据与所有数据一样,都存在延迟和错误。这么说来,比特币和以太坊确实似乎高了。(2021年2月 埃隆·马斯克评) [28]2021年5月,诺贝尔经济学奖获得者、保罗·克鲁格曼(Paul Krugman)在推特上发布了一篇其发表在纽约时报上对比特币的评论 [32],克鲁格曼表示,比特币之类的加密资产是一个庞氏骗局。克鲁格曼认为,自诞生起12年,加密货币在正常的经济活动中几乎不起任何作用。听说被用作支付手段,而不是投机交易,是与非法活动有关,比如洗钱或向关闭它的黑客支付比特币赎金。其在与加密货币或区块链的狂热者的多次会面中,关于区块链技术与加密货币解决了什么问题,他认为至今仍然未听到明确的答案。 [32]危害风险播报编辑在没有任何政策干预的情况下,中国比特币区块链的年能耗将在2024年达到峰值296.59太瓦时,产生1.305亿公吨碳排放。比特币的高耗能特性已经引起世界各国的注意。在计算的过程中,比特币全网会消耗大量的电力能源和算力。 [34]利用清洁能源挖矿2021年3月,加拿大区块链公司开发出绿色比特币挖矿设施,由风能和太阳能提供电力 [52]。2021年10月,为减轻比特币“开采”过程中的能耗和污染,萨尔瓦多开始利用火山地热能发电,为“挖矿” 提供能源 [53]。法定货币国家播报编辑2021年6月9日,萨尔瓦多议会通过一项法案,批准将比特币作为该国法定货币,该法案于90天后即9月7日正式生效。2021年9月6日,萨尔瓦多总统布克尔通过社交网络宣布,萨政府当天分两次购入共400枚比特币,按当前行情价值约2100万美元 [36]。2021年9月,古巴央行(BCC)发布的2021年第215条决议承认比特币等加密货币生效。加密货币目前已成为古巴商业交易的合法支付方式 [51]。2022年,中非共和国国民大会一致通过了一项法案,将比特币作为法定货币。 [68]2023年12月21日,阿根廷外交部长蒙迪诺在社交媒体平台X发文称:“我们批准并确认在阿根廷可使用比特币达成合约。” [94]比特币城市播报编辑2021年11月20日,萨尔瓦多总统纳伊布·布克尔宣布,萨尔瓦多打算发行比特币债券,以筹资建造全球第一座“比特币城”。 [48]2021年11月22日消息,萨尔瓦多计划建造以火山为动力的“比特币城市”。该国总统布克尔说,将在该国拉乌尼翁东部地区建设一座从火山中获取地热能的城市。该座城市除增值税外不征收任何税款。所征收的增值税一半用于发行债券,进而资助城市建设,另一半将用于支付垃圾收集等服务费用。布克尔表示,该项目将通过发行10亿美元的、由比特币支持的主权债券来筹措部分资金。 [47]慈善活动播报编辑在美国的大学足球大赛时,学生们会纷纷设计有特点的标语牌来吸引人们的目光。2013年12月,一名学生的标语牌上写着:HI MOM SEND(妈妈,给我汇款)。文字下面配上了比特币的标志和二维码(二维码中介绍了有关汇款的事项),这个画面还出现在了电视屏幕中。这名学生本人只是将此当作一个噱头,并没有真的想让谁给他汇比特币。但是,在打出标语的24小时内,他便收到了相当于20600美元(约226万日元)的比特币。看现场直播的人们用手机扫描二维码为他汇了款。这些钱最终都捐给了慈善组织。 [90]在与俄罗斯常年发生纷争的乌克兰街头,路障旁边的市民们都会立起“我们需要援助”的标语(上面印着比特币的二维码)。 [90]多方监管播报编辑中国中国相关部门一直在密切关注国内比特币业务的扩张,因为该业务对金融稳定构成潜在威胁,同时吸引了大量寻求快速获得利润的投机性个人投资者。中国对资本和外汇实施严格控制,2015年底中国比特币需求大幅增长,帮助推升了比特币在全球市场的价格,同时引发了监管机构的注意。2013年12月中国人民银行要求金融机构停止为比特币交易提供服务。当月,中国人民银行又明确规定第三方支付机构不得帮助比特币交易所从客户手中收取资金。 [91]2013年12月5日,人民银行等五部委联合下发《关于防范比特币风险的通知》,文件中明确了中国政府对于比特币的态度。一是不承认比特币的货币地位,但是承认其虚拟货币的地位。同时指出“比特币不具有与货币等同的法律地位,不能且不应作为货币在市场上流通使用”。政府允许公众在自担风险的前提下自由参与比特币的交易。二是强调现阶段“金融机构和支付机构不得开展与比特币相关的业务”,防止比特币的投机性风险向金融机构传递。三是为防止不法分子用比特币交易洗钱,加强对比特币交易市场的监管,对用户身份信息进行识别并报告可疑用户。 [91]2014年4月29日,人民银行发布《中国金融稳定报告(2014)》中特意提到了比特币,指出比特币具有很强的可替代性,任何有自己的开采算法、遵循P2P协议、限量、无中心管制的数字“货币”都有可能取代比特币。人民银行表示,从属性看,比特币不是真正意义上的货币。比特币具有很强的可替代性,很难固定地充当一般等价物。相关政策的出台不仅是对比特币投资者的保护,也有利于比特币交易在中国有序地发展。 [91]美国2013年3月18日美国财政部金融犯罪执法网发布了《虚拟货币管理条例》,认为比特币交易是一种货币转移业务,在美国开展业务需要获得所有的相关许可,并把MtGox(曾是世界上最大的比特币交易商,承担着超过80%的比特币交易,现已破产)列为重要的监管对象。2013年5月,美国国土安全部冻结了MtGox的两个美国银行账户,指证该公司涉嫌为洗钱提供便利与无证经营货币转移业务。 [91]韩国2013年12月,韩国拒绝承认比特币等虚拟货币作为合法的货币形式,将增加对虚拟货币交易的监控,特别是洗钱等犯罪活动。 [92]法国2012年12月,法国政府核准比特币交易平台“比特币中央”取得国际银行账号(Iban),使其接受政府监管并跻身准银行之列。 [92]日本2016年3月,日本金融厅考虑修改立法将电子货币(如比特币)作为付款方式的一种,使得电子货币“实现货币的功能”。 [92]卢森堡2016年4月,卢森堡批准比特币交易公司Bitstamp的营业执照,使之成为欧洲首家受到全面监管的比特币交易机构,将比特币正式纳入货币市场之中。 [92]新手上路成长任务编辑入门编辑规则本人编辑我有疑问内容质疑在线客服官方贴吧意见反馈投诉建议举报不良信息未通过词条申诉投诉侵权信息封禁查询与解封©2024 Baidu 使用百度前必读 | 百科协议 | 隐私政策 | 百度百科合作平台 | 京ICP证030173号 京公网安备110000020000区块链技术研究综述:原理、进展与应用
区块链技术研究综述:原理、进展与应用
主管单位:中国科学技术协会
主办单位:中国通信学会
ISSN 1000-436X CN 11-2102/TN
首页
期刊简介
编委会
投稿指南
道德声明
期刊协议
期刊订阅
会议活动
下载中心
联系我们
English
期刊介绍
期刊信息
投稿须知
稿件格式要求
审稿流程
下载中心
联系方式
Toggle navigation
首页
期刊简介
期刊介绍
期刊信息
编委会
投稿指南
投稿须知
稿件格式要求
审稿流程
下载中心
道德声明
期刊协议
期刊订阅
会议活动
联系我们
English
通信学报, 2020, 41(1): 134-151 doi: 10.11959/j.issn.1000-436x.2020027
综述
区块链技术研究综述:原理、进展与应用
曾诗钦1, 霍如2,3, 黄韬1,3, 刘江1,3, 汪硕1,3, 冯伟4
1 北京邮电大学网络与交换国家重点实验室,北京 100876
2 北京工业大学北京未来网络科技高精尖创新中心,北京 100124
3 网络通信与安全紫金山实验室,江苏 南京 211111
4 工业和信息化部信息化和软件服务业司,北京 100846
Survey of blockchain:principle,progress and application
ZENG Shiqin1, HUO Ru2,3, HUANG Tao1,3, LIU Jiang1,3, WANG Shuo1,3, FENG Wei4
1 State Key Laboratory of Networking and Switching Technology,Beijing University of Posts and Telecommunications,Beijing 100876,China
2 Beijing Advanced Innovation Center for Future Internet Technology,Beijing University of Technology,Beijing 100124,China
3 Purple Mountain Laboratories,Nanjing 211111,China
4 Department of Information Technology Application and Software Services,Beijing 100846,China
通讯作者: 霍如,huoru@bjut.edu.cn
修回日期: 2019-12-12
网络出版日期: 2020-01-25
基金资助:
国家高技术研究发展计划(“863”计划)基金资助项目. 2015AA015702未来网络操作系统发展战略研究基金资助项目. 2019-XY-5
Revised: 2019-12-12
Online: 2020-01-25
Fund supported:
The National High Technology Research and Development Program of China (863 Program). 2015AA015702The Development Strategy Research of Future Network Operating System. 2019-XY-5
作者简介 About authors
曾诗钦(1995-),男,广西南宁人,北京邮电大学博士生,主要研究方向为区块链、标识解析技术、工业互联网
。
霍如(1988-),女,黑龙江哈尔滨人,博士,北京工业大学讲师,主要研究方向为计算机网络、信息中心网络、网络缓存策略与算法、工业互联网、标识解析技术等。
。
黄韬(1980-),男,重庆人,博士,北京邮电大学教授,主要研究方向为未来网络体系架构、软件定义网络、网络虚拟化等。
。
刘江(1983-),男,河南郑州人,博士,北京邮电大学教授,主要研究方向为未来网络体系架构、软件定义网络、网络虚拟化、信息中心网络等。
。
汪硕(1991-),男,河南灵宝人,博士,北京邮电大学在站博士后,主要研究方向为数据中心网络、软件定义网络、网络流量调度等。
。
冯伟(1980-),男,河北邯郸人,博士,工业和信息化部副研究员,主要研究方向为工业互联网平台、数字孪生、信息化和工业化融合发展关键技术等
。
摘要
区块链是一种分布式账本技术,依靠智能合约等逻辑控制功能演变为完整的存储系统。其分类方式、服务模式和应用需求的变化导致核心技术形态的多样性发展。为了完整地认知区块链生态系统,设计了一个层次化的区块链技术体系结构,进一步深入剖析区块链每层结构的基本原理、技术关联以及研究进展,系统归纳典型区块链项目的技术选型和特点,最后给出智慧城市、工业互联网等区块链前沿应用方向,提出区块链技术挑战与研究展望。
关键词:
区块链
;
加密货币
;
去中心化
;
层次化技术体系结构
;
技术多样性
;
工业区块链
Abstract
Blockchain is a kind of distributed ledger technology that upgrades to a complete storage system by adding logic control functions such as intelligent contracts.With the changes of its classification,service mode and application requirements,the core technology forms of Blockchain show diversified development.In order to understand the Blockchain ecosystem thoroughly,a hierarchical technology architecture of Blockchain was proposed.Furthermore,each layer of blockchain was analyzed from the perspectives of basic principle,related technologies and research progress in-depth.Moreover,the technology selections and characteristics of typical Blockchain projects were summarized systematically.Finally,some application directions of blockchain frontiers,technology challenges and research prospects including Smart Cities and Industrial Internet were given.
Keywords:
blockchain
;
cryptocurrency
;
decentralization
;
hierarchical technology architecture
;
technology diversity
;
PDF (1174KB)
元数据
多维度评价
相关文章
导出
EndNote|
Ris|
Bibtex
收藏本文
本文引用格式
曾诗钦, 霍如, 黄韬, 刘江, 汪硕, 冯伟. 区块链技术研究综述:原理、进展与应用. 通信学报[J], 2020, 41(1): 134-151 doi:10.11959/j.issn.1000-436x.2020027
ZENG Shiqin. Survey of blockchain:principle,progress and application. Journal on Communications[J], 2020, 41(1): 134-151 doi:10.11959/j.issn.1000-436x.2020027
1 引言
2008年,中本聪提出了去中心化加密货币——比特币(bitcoin)的设计构想。2009年,比特币系统开始运行,标志着比特币的正式诞生。2010—2015 年,比特币逐渐进入大众视野。2016—2018年,随着各国陆续对比特币进行公开表态以及世界主流经济的不确定性增强,比特币的受关注程度激增,需求量迅速扩大。事实上,比特币是区块链技术最成功的应用场景之一。伴随着以太坊(ethereum)等开源区块链平台的诞生以及大量去中心化应用(DApp,decentralized application)的落地,区块链技术在更多的行业中得到了应用。
由于具备过程可信和去中心化两大特点,区块链能够在多利益主体参与的场景下以低成本的方式构建信任基础,旨在重塑社会信用体系。近两年来区块链发展迅速,人们开始尝试将其应用于金融、教育、医疗、物流等领域。但是,资源浪费、运行低效等问题制约着区块链的发展,这些因素造成区块链分类方式、服务模式和应用需求发生快速变化,进一步导致核心技术朝多样化方向发展,因此有必要采取通用的结构分析区块链项目的技术路线和特点,以梳理和明确区块链的研究方向。
区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值。袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势。上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析。本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望。
2 相关概念
随着区块链技术的深入研究,不断衍生出了很多相关的术语,例如“中心化”“去中心化”“公链”“联盟链”等。为了全面地了解区块链技术,并对区块链技术涉及的关键术语有系统的认知,本节将给出区块链及其相关概念的定义,以及它们的联系,更好地区分易使人混淆的术语。
2.1 中心化与去中心化
中心化(centralization)与去中心化(decentralization)最早用来描述社会治理权力的分布特征。从区块链应用角度出发,中心化是指以单个组织为枢纽构建信任关系的场景特点。例如,电子支付场景下用户必须通过银行的信息系统完成身份验证、信用审查和交易追溯等;电子商务场景下对端身份的验证必须依靠权威机构下发的数字证书完成。相反,去中心化是指不依靠单一组织进行信任构建的场景特点,该场景下每个组织的重要性基本相同。
2.2 加密货币
加密货币(cryptocurrency)是一类数字货币(digital currency)技术,它利用多种密码学方法处理货币数据,保证用户的匿名性、价值的有效性;利用可信设施发放和核对货币数据,保证货币数量的可控性、资产记录的可审核性,从而使货币数据成为具备流通属性的价值交换媒介,同时保护使用者的隐私。
加密货币的概念起源于一种基于盲签名(blind signature)的匿名交易技术[6],最早的加密货币交易模型“electronic cash”[7]如图1所示。
图1
新窗口打开|
下载原图ZIP|
生成PPT
图1
“electronic cash”交易模型
交易开始前,付款者使用银行账户兑换加密货币,然后将货币数据发送给领款者,领款者向银行发起核对请求,若该数据为银行签发的合法货币数据,那么银行将向领款者账户记入等额数值。通过盲签名技术,银行完成对货币数据的认证,而无法获得发放货币与接收货币之间的关联,从而保证了价值的有效性、用户的匿名性;银行天然具有发放币种、账户记录的能力,因此保证了货币数量的可控性与资产记录的可审核性。
最早的加密货币构想将银行作为构建信任的基础,呈现中心化特点。此后,加密货币朝着去中心化方向发展,并试图用工作量证明(PoW,poof of work)[8]或其改进方法定义价值。比特币在此基础上,采用新型分布式账本技术保证被所有节点维护的数据不可篡改,从而成功构建信任基础,成为真正意义上的去中心化加密货币。区块链从去中心化加密货币发展而来,随着区块链的进一步发展,去中心化加密货币已经成为区块链的主要应用之一。
2.3 区块链及工作流程
一般认为,区块链是一种融合多种现有技术的新型分布式计算和存储范式。它利用分布式共识算法生成和更新数据,并利用对等网络进行节点间的数据传输,结合密码学原理和时间戳等技术的分布式账本保证存储数据的不可篡改,利用自动化脚本代码或智能合约实现上层应用逻辑。如果说传统数据库实现数据的单方维护,那么区块链则实现多方维护相同数据,保证数据的安全性和业务的公平性。区块链的工作流程主要包含生成区块、共识验证、账本维护3个步骤。
1) 生成区块。区块链节点收集广播在网络中的交易——需要记录的数据条目,然后将这些交易打包成区块——具有特定结构的数据集。
2) 共识验证。节点将区块广播至网络中,全网节点接收大量区块后进行顺序的共识和内容的验证,形成账本——具有特定结构的区块集。
3) 账本维护。节点长期存储验证通过的账本数据并提供回溯检验等功能,为上层应用提供账本访问接口。
2.4 区块链类型
根据不同场景下的信任构建方式,可将区块链分为2类:非许可链(permissionless blockchain)和许可链(permissioned blockchain)。
非许可链也称为公链(public blockchain),是一种完全开放的区块链,即任何人都可以加入网络并参与完整的共识记账过程,彼此之间不需要信任。公链以消耗算力等方式建立全网节点的信任关系,具备完全去中心化特点的同时也带来资源浪费、效率低下等问题。公链多应用于比特币等去监管、匿名化、自由的加密货币场景。
许可链是一种半开放式的区块链,只有指定的成员可以加入网络,且每个成员的参与权各有不同。许可链往往通过颁发身份证书的方式事先建立信任关系,具备部分去中心化特点,相比于非许可链拥有更高的效率。进一步,许可链分为联盟链(consortium blockchain)和私链(fully private blockchain)。联盟链由多个机构组成的联盟构建,账本的生成、共识、维护分别由联盟指定的成员参与完成。在结合区块链与其他技术进行场景创新时,公链的完全开放与去中心化特性并非必需,其低效率更无法满足需求,因此联盟链在某些场景中成为实适用性更强的区块链选型。私链相较联盟链而言中心化程度更高,其数据的产生、共识、维护过程完全由单个组织掌握,被该组织指定的成员仅具有账本的读取权限。
3 区块链体系结构
根据区块链发展现状,本节将归纳区块链的通用层次技术结构、基本原理和研究进展。
现有项目的技术选型多数由比特币演变而来,所以区块链主要基于对等网络通信,拥有新型的基础数据结构,通过全网节点共识实现公共账本数据的统一。但是区块链也存在效率低、功耗大和可扩展性差等问题,因此人们进一步以共识算法、处理模型、交易模式创新为切入点进行技术方案改进,并在此基础上丰富了逻辑控制功能和区块链应用功能,使其成为一种新型计算模式。本文给出如图2 所示的区块链通用层次化技术结构,自下而上分别为网络层、数据层、共识层、控制层和应用层。其中,网络层是区块链信息交互的基础,承载节点间的共识过程和数据传输,主要包括建立在基础网络之上的对等网络及其安全机制;数据层包括区块链基本数据结构及其原理;共识层保证节点数据的一致性,封装各类共识算法和驱动节点共识行为的奖惩机制;控制层包括沙盒环境、自动化脚本、智能合约和权限管理等,提供区块链可编程特性,实现对区块数据、业务数据、组织结构的控制;应用层包括区块链的相关应用场景和实践案例,通过调用控制合约提供的接口进行数据交互,由于该层次不涉及区块链原理,因此在第 5节中单独介绍。
3.1 网络层
网络层关注区块链网络的基础通信方式——对等(P2P,peer-to-peer)网络。对等网络是区别于“客户端/服务器”服务模式的计算机通信与存储架构,网络中每个节点既是数据的提供者也是数据的使用者,节点间通过直接交换实现计算机资源与信息的共享,因此每个节点地位均等。区块链网络层由组网结构、通信机制、安全机制组成。其中组网结构描述节点间的路由和拓扑关系,通信机制用于实现节点间的信息交互,安全机制涵盖对端安全和传输安全。
图2
新窗口打开|
下载原图ZIP|
生成PPT
图2
区块链层次化技术结构
1) 组网结构
对等网络的体系架构可分为无结构对等网络、结构化对等网络和混合式对等网络[9],根据节点的逻辑拓扑关系,区块链网络的组网结构也可以划分为上述3种,如图3所示。
图3
新窗口打开|
下载原图ZIP|
生成PPT
图3
区块链组网结构
无结构对等网络是指网络中不存在特殊中继节点、节点路由表的生成无确定规律、网络拓扑呈现随机图状的一类对等网络。该类网络结构松散,设计简洁,具有良好的容错性和匿名性,但由于采用洪泛机制作为信息传播方式,其可扩展性较差。典型的协议有Gnutella等。
结构化对等网络是指网络中不存在特殊中继节点、节点间根据特定算法生成路由表、网络拓扑具有严格规律的一类对等网络。该类网络实现复杂但可扩展性良好,通过结构化寻址可以精确定位节点从而实现多样化功能。常见的结构化网络以DHT (distributed hash table)网络为主,典型的算法有Chord、Kademlia等。
混合式对等网络是指节点通过分布式中继节点实现全网消息路由的一类对等网络。每个中继节点维护部分网络节点地址、文件索引等工作,共同实现数据中继的功能。典型的协议有Kazza等。
2) 通信机制
通信机制是指区块链网络中各节点间的对等通信协议,建立在 TCP/UDP 之上,位于计算机网络协议栈的应用层,如图4所示。该机制承载对等网络的具体交互逻辑,例如节点握手、心跳检测、交易和区块传播等。由于包含的协议功能不同(例如基础链接与扩展交互),本文将通信机制细分为3个层次:传播层、连接层和交互逻辑层。
传播层实现对等节点间数据的基本传输,包括2 种数据传播方式:单点传播和多点传播。单点传播是指数据在2个已知节点间直接进行传输而不经过其他节点转发的传播方式;多点传播是指接收数据的节点通过广播向邻近节点进行数据转发的传播方式,区块链网络普遍基于Gossip协议[10]实现洪泛传播。连接层用于获取节点信息,监测和改变节点间连通状态,确保节点间链路的可用性(availability)。具体而言,连接层协议帮助新加入节点获取路由表数据,通过定时心跳监测为节点保持稳定连接,在邻居节点失效等情况下为节点关闭连接等。交互逻辑层是区块链网络的核心,从主要流程上看,该层协议承载对等节点间账本数据的同步、交易和区块数据的传输、数据校验结果的反馈等信息交互逻辑,除此之外,还为节点选举、共识算法实施等复杂操作和扩展应用提供消息通路。
图4
新窗口打开|
下载原图ZIP|
生成PPT
图4
区块链网络通信机制
3) 安全机制
安全是每个系统必须具备的要素,以比特币为代表的非许可链利用其数据层和共识层的机制,依靠消耗算力的方式保证数据的一致性和有效性,没有考虑数据传输过程的安全性,反而将其建立在不可信的透明P2P网络上。随着隐私保护需求的提出,非许可链也采用了一些网络匿名通信方法,例如匿名网络Tor(the onion router)通过沿路径的层层数据加密机制来保护对端身份。许可链对成员的可信程度有更高的要求,在网络层面采取适当的安全机制,主要包括身份安全和传输安全两方面。身份安全是许可链的主要安全需求,保证端到端的可信,一般采用数字签名技术实现,对节点的全生命周期(例如节点交互、投票、同步等)进行签名,从而实现许可链的准入许可。传输安全防止数据在传输过程中遭到篡改或监听,常采用基于TLS的点对点传输和基于Hash算法的数据验证技术。
4) 研究现状
目前,区块链网络层研究主要集中在3个方向:测量优化、匿名分析与隐私保护、安全防护。
随着近年来区块链网络的爆炸式发展以及开源特点,学术界开始关注大型公有链项目的网络状况,监测并研究它们的特点,研究对象主要为比特币网络。Decker等[11]设计和实现测量工具,分析传播时延数据、协议数据和地址数据,建模分析影响比特币网络性能的网络层因素,基于此提出各自的优化方法。Fadhil等[12]提出基于事件仿真的比特币网络仿真模型,利用真实测量数据验证模型的有效性,最后提出优化机制 BCBSN,旨在设立超级节点降低网络波动。Kaneko 等[13]将区块链节点分为共识节点和验证节点,其中共识节点采用无结构组网方式,验证节点采用结构化组网方式,利用不同组网方式的优点实现网络负载的均衡。
匿名性是加密货币的重要特性之一,但从网络层视角看,区块链的匿名性并不能有效保证,因为攻击者可以利用监听并追踪 IP 地址的方式推测出交易之间、交易与公钥地址之间的关系,通过匿名隐私研究可以主动发掘安全隐患,规避潜在危害。Koshy 等[16,17]从网络拓扑、传播层协议和作恶模型3个方面对比特币网络进行建模,通过理论分析和仿真实验证明了比特币网络协议在树形组网结构下仅具备弱匿名性,在此基础上提出 Dandelion 网络策略以较低的网络开销优化匿名性,随后又提出 Dandelion++原理,以最优信息理论保证来抵抗大规模去匿名攻击。
区块链重点关注其数据层和共识层面机制,并基于普通网络构建开放的互联环境,该方式极易遭受攻击。为提高区块链网络的安全性,学术界展开研究并给出了相应的解决方案。Heilman 等[18]对比特币和以太坊网络实施日蚀攻击(eclipse attack)——通过屏蔽正确节点从而完全控制特定节点的信息来源,证实了该攻击的可行性。Apostolaki等[19]提出针对比特币网络的 BGP(border gateway protocal)劫持攻击,通过操纵自治域间路由或拦截域间流量来制造节点通信阻塞,表明针对关键数据的沿路攻击可以大大降低区块传播性能。
3.2 数据层
区块链中的“块”和“链”都是用来描述其数据结构特征的词汇,可见数据层是区块链技术体系的核心。区块链数据层定义了各节点中数据的联系和组织方式,利用多种算法和机制保证数据的强关联性和验证的高效性,从而使区块链具备实用的数据防篡改特性。除此之外,区块链网络中每个节点存储完整数据的行为增加了信息泄露的风险,隐私保护便成为迫切需求,而数据层通过非对称加密等密码学原理实现了承载应用信息的匿名保护,促进区块链应用普及和生态构建。因此,从不同应用信息的承载方式出发,考虑数据关联性、验证高效性和信息匿名性需求,可将数据层关键技术分为信息模型、关联验证结构和加密机制3类。
1) 信息模型
区块链承载了不同应用的数据(例如支付记录、审计数据、供应链信息等),而信息模型则是指节点记录应用信息的逻辑结构,主要包括UTXO (unspent transaction output)、基于账户和键值对模型3种。需要说明的是,在大部分区块链网络中,每个用户均被分配了交易地址,该地址由一对公私钥生成,使用地址标识用户并通过数字签名的方式检验交易的有效性。
UTXO是比特币交易中的核心概念,逐渐演变为区块链在金融领域应用的主要信息模型,如图5所示。每笔交易(Tx)由输入数据(Input)和输出数据(Output)组成,输出数据为交易金额(Num)和用户公钥地址(Adr),而输入数据为上一笔交易输出数据的指针(Pointer),直到该比特币的初始交易由区块链网络向节点发放。
图5
新窗口打开|
下载原图ZIP|
生成PPT
图5
UTXO信息模型
基于账户的信息模型以键值对的形式存储数据,维护着账户当前的有效余额,通过执行交易来不断更新账户数据。相比于UTXO,基于账户的信息模型与银行的储蓄账户类似,更直观和高效。
不管是UTXO还是基于账户的信息模型,都建立在更为通用的键值对模型上,因此为了适应更广泛的应用场景,键值对模型可直接用于存储业务数据,表现为表单或集合形式。该模型利于数据的存取并支持更复杂的业务逻辑,但是也存在复杂度高的问题。
2) 关联验证结构
区块链之所以具备防篡改特性,得益于链状数据结构的强关联性。该结构确定了数据之间的绑定关系,当某个数据被篡改时,该关系将会遭到破坏。由于伪造这种关系的代价是极高的,相反检验该关系的工作量很小,因此篡改成功率被降至极低。链状结构的基本数据单位是“区块(block)”,基本内容如图6所示。
图6
新窗口打开|
下载原图ZIP|
生成PPT
图6
基本区块结构
区块由区块头(Header)和区块体(Body)两部分组成,区块体包含一定数量的交易集合;区块头通过前继散列(PrevHash)维持与上一区块的关联从而形成链状结构,通过MKT(MerkleTree)生成的根散列(RootHash)快速验证区块体交易集合的完整性。因此散列算法和 MKT 是关联验证结构的关键,以下将对此展开介绍。
散列(Hash)算法也称为散列函数,它实现了明文到密文的不可逆映射;同时,散列算法可以将任意长度的输入经过变化得到固定长度的输出;最后,即使元数据有细微差距,变化后的输出也会产生显著不同。利用散列算法的单向、定长和差异放大的特征,节点通过比对当前区块头的前继散列即可确定上一区块内容的正确性,使区块的链状结构得以维系。区块链中常用的散列算法包括SHA256等。
MKT包括根散列、散列分支和交易数据。MKT首先对交易进行散列运算,再对这些散列值进行分组散列,最后逐级递归直至根散列。MKT 带来诸多好处:一方面,对根散列的完整性确定即间接地实现交易的完整性确认,提升高效性;另一方面,根据交易的散列路径(例如 Tx1:Hash2、Hash34)可降低验证某交易存在性的复杂度,若交易总数为N,那么MKT可将复杂度由N降为lbN。除此之外,还有其他数据结构与其配合使用,例如以太坊通过MPT(Merkle Patricia tree)——PatriciaTrie 和MerkleTree混合结构,高效验证其基于账户的信息模型数据。
此外,区块头中还可根据不同项目需求灵活添加其他信息,例如添加时间戳为区块链加入时间维度,形成时序记录;添加记账节点标识,以维护成块节点的权益;添加交易数量,进一步提高区块体数据的安全性。
3) 加密机制
由上述加密货币原理可知,经比特币演变的区块链技术具备与生俱来的匿名性,通过非对称加密等技术既保证了用户的隐私又检验了用户身份。非对称加密技术是指加密者和解密者利用2个不同秘钥完成加解密,且秘钥之间不能相互推导的加密机制。常用的非对称加密算法包括 RSA、Elgamal、背包算法、Rabin、D-H、ECC(椭圆曲线加密算法)等。对应图5,Alice 向 Bob 发起交易 Tx2,Alice使用Bob的公钥对交易签名,仅当Bob使用私钥验证该数字签名时,才有权利创建另一笔交易,使自身拥有的币生效。该机制将公钥作为基础标识用户,使用户身份不可读,一定程度上保护了隐私。
4) 研究现状
数据层面的研究方向集中在高效验证、匿名分析、隐私保护3个方面。
高效验证的学术问题源于验证数据结构(ADS,authenticated data structure),即利用特定数据结构快速验证数据的完整性,实际上 MKT 也是其中的一种。为了适应区块链数据的动态性(dynamical)并保持良好性能,学术界展开了研究。Reyzin等[20]基于AVL树形结构提出AVL+,并通过平衡验证路径、缺省堆栈交易集等机制,简化轻量级节点的区块头验证过程。Zhang等[21]提出GEM2-tree结构,并对其进行优化提出 GEM2כ-tree 结构,通过分解单树结构、动态调整节点计算速度、扩展数据索引等机制降低以太坊节点计算开销。
区块数据直接承载业务信息,因此区块数据的匿名关联性分析更为直接。Reid等[22]将区块数据建模为事务网络和用户网络,利用多交易数据的用户指向性分析成功降低网络复杂度。Meiklejohn等[23]利用启发式聚类方法分析交易数据的流动特性并对用户进行分组,通过与这些服务的互动来识别主要机构的比特币地址。Awan 等[24]使用优势集(dominant set)方法对区块链交易进行自动分类,从而提高分析准确率。
隐私保护方面,Saxena等[25]提出复合签名技术削弱数据的关联性,基于双线性映射中的Diffie-Hellman假设保证计算困难性,从而保护用户隐私。Miers 等[26]和 Sasson 等[27]提出 Zerocoin 和Zerocash,在不添加可信方的情况下断开交易间的联系,最早利用零知识证明(zero-knowledge proof)技术隐藏交易的输入、输出和金额信息,提高比特币的匿名性。非对称加密是区块链数据安全的核心,但在量子计算面前却显得“捉襟见肘”,为此Yin等[28]利用盆景树模型(bonsai tree)改进晶格签名技术(lattice-based signature),以保证公私钥的随机性和安全性,使反量子加密技术适用于区块链用户地址的生成。
3.3 共识层
区块链网络中每个节点必须维护完全相同的账本数据,然而各节点产生数据的时间不同、获取数据的来源未知,存在节点故意广播错误数据的可能性,这将导致女巫攻击[29]、双花攻击[30]等安全风险;除此之外,节点故障、网络拥塞带来的数据异常也无法预测。因此,如何在不可信的环境下实现账本数据的全网统一是共识层解决的关键问题。实际上,上述错误是拜占庭将军问题(the Byzantine generals problem)[31]在区块链中的具体表现,即拜占庭错误——相互独立的组件可以做出任意或恶意的行为,并可能与其他错误组件产生协作,此类错误在可信分布式计算领域被广泛研究。
状态机复制(state-machine replication)是解决分布式系统容错问题的常用理论。其基本思想为:任何计算都表示为状态机,通过接收消息来更改其状态。假设一组副本以相同的初始状态开始,并且能够就一组公共消息的顺序达成一致,那么它们可以独立进行状态的演化计算,从而正确维护各自副本之间的一致性。同样,区块链也使用状态机复制理论解决拜占庭容错问题,如果把每个节点的数据视为账本数据的副本,那么节点接收到的交易、区块即为引起副本状态变化的消息。状态机复制理论实现和维持副本的一致性主要包含2个要素:正确执行计算逻辑的确定性状态机和传播相同序列消息的共识协议。其中,共识协议是影响容错效果、吞吐量和复杂度的关键,不同安全性、可扩展性要求的系统需要的共识协议各有不同。学术界普遍根据通信模型和容错类型对共识协议进行区分[32],因此严格地说,区块链使用的共识协议需要解决的是部分同步(partial synchrony)模型[33]下的拜占庭容错问题。
区块链网络中主要包含PoX(poof of X)[34]、BFT(byzantine-fault tolerant)和 CFT(crash-fault tolerant)类基础共识协议。PoX 类协议是以 PoW (proof of work)为代表的基于奖惩机制驱动的新型共识协议,为了适应数据吞吐量、资源利用率和安全性的需求,人们又提出PoS(proof of stake)、PoST (proof of space-time)等改进协议。它们的基本特点在于设计证明依据,使诚实节点可以证明其合法性,从而实现拜占庭容错。BFT类协议是指解决拜占庭容错问题的传统共识协议及其改良协议,包括PBFT、BFT-SMaRt、Tendermint等。CFT类协议用于实现崩溃容错,通过身份证明等手段规避节点作恶的情况,仅考虑节点或网络的崩溃(crash)故障,主要包括Raft、Paxos、Kafka等协议。
非许可链和许可链的开放程度和容错需求存在差异,共识层面技术在两者之间产生了较大区别。具体而言,非许可链完全开放,需要抵御严重的拜占庭风险,多采用PoX、BFT类协议并配合奖惩机制实现共识。许可链拥有准入机制,网络中节点身份可知,一定程度降低了拜占庭风险,因此可采用BFT类协议、CFT类协议构建相同的信任模型[35]。
限于篇幅原因,本节仅以 PoW、PBFT、Raft为切入进行3类协议的分析。
1) PoX类协议
PoW也称为Nakamoto协议,是比特币及其衍生项目使用的核心共识协议,如图7所示。
图7
新窗口打开|
下载原图ZIP|
生成PPT
图7
PoW协议示意
该协议在区块链头结构中加入随机数Nonce,并设计证明依据:为生成新区块,节点必须计算出合适的 Nonce 值,使新生成的区块头经过双重SHA256 运算后小于特定阈值。该协议的整体流程为:全网节点分别计算证明依据,成功求解的节点确定合法区块并广播,其余节点对合法区块头进行验证,若验证无误则与本地区块形成链状结构并转发,最终达到全网共识。PoW是随机性协议,任何节点都有可能求出依据,合法区块的不唯一将导致生成分支链,此时节点根据“最长链原则”选择一定时间内生成的最长链作为主链而抛弃其余分支链,从而使各节点数据最终收敛。
PoW协议采用随机性算力选举机制,实现拜占庭容错的关键在于记账权的争夺,目前寻找证明依据的方法只有暴力搜索,其速度完全取决于计算芯片的性能,因此当诚实节点数量过半,即“诚实算力”过半时,PoW便能使合法分支链保持最快的增长速度,也即保证主链一直是合法的。PoW是一种依靠饱和算力竞争纠正拜占庭错误的共识协议,关注区块产生、传播过程中的拜占庭容错,在保证防止双花攻击的同时也存在资源浪费、可扩展性差等问题。
2) BFT类协议
PBFT是 BFT经典共识协议,其主要流程如图8 所示。PBFT将节点分为主节点和副节点,其中主节点负责将交易打包成区块,副节点参与验证和转发,假设作恶节点数量为f。PBFT共识主要分为预准备、准备和接受3个阶段,主节点首先收集交易后排序并提出合法区块提案;其余节点先验证提案的合法性,然后根据区块内交易顺序依次执行并将结果摘要组播;各节点收到2f个与自身相同的摘要后便组播接受投票;当节点收到超过2f+1个投票时便存储区块及其产生的新状态[36]。
图8
新窗口打开|
下载原图ZIP|
生成PPT
图8
PBFT协议示意
PBFT 协议解决消息传播过程的拜占庭容错,由于算法复杂度为 O(n2)且存在确定性的主节点选举规则,PBFT 仅适用于节点数量少的小型许可链系统。
3) CFT类协议
Raft[37]是典型的崩溃容错共识协议,以可用性强著称。Raft将节点分为跟随节点、候选节点和领导节点,领导节点负责将交易打包成区块,追随节点响应领导节点的同步指令,候选节点完成领导节点的选举工作。当网络运行稳定时,只存在领导节点和追随节点,领导节点向追随节点推送区块数据从而实现同步。节点均设置生存时间决定角色变化周期,领导节点的心跳信息不断重置追随节点的生存时间,当领导节点发生崩溃时,追随节点自动转化为候选节点并进入选举流程,实现网络自恢复。
Raft协议实现崩溃容错的关键在于领导节点的自选举机制,部分许可链选择降低可信需求,将拜占庭容错转换为崩溃容错,从而提升共识速度。
4) 奖惩机制
奖惩机制包括激励机制与惩罚策略,其中激励机制是为了弥补节点算力消耗、平衡协议运行收益比的措施,当节点能够在共识过程中获得收益时才会进行记账权的争夺,因此激励机制利用经济效益驱动各共识协议可持续运行。激励机制一般基于价值均衡理论设计,具有代表性的机制包括PPLNS、PPS等。为了实现收益最大化,节点可能采用不诚实的运行策略(如扣块攻击、自私挖矿等),损害了诚实节点的利益,惩罚策略基于博弈论等理论对节点进行惩罚,从而纠正不端节点的行为,维护共识可持续性。
5) 研究现状
随着可扩展性和性能需求的多样化发展,除了传统的BFT、CFT协议和PoX协议衍生研究,还产生了混合型协议(Hybrid)——主要为 PoX类协议混合以及PoX-BFT协议混合。因此本节从PoX类、BFT类以及Hybrid类协议归纳共识层研究进展。
如前文所述,PoX类协议的基本特点在于设计证明依据,使诚实节点可以证明其合法性,从而实现拜占庭容错。uPoW[38]通过计算有意义的正交向量问题证明节点合法性,使算力不被浪费。PoI (proof-of-importance)[39]利用图论原理为每个节点赋予重要性权重,权重越高的节点将越有可能算出区块。PoS(poof-of-stake)为节点定义“币龄”,拥有更高币龄的节点将被分配更多的股份(stake),而股份被作为证明依据用于成块节点的选举。Ouroboros[40]通过引入多方掷币协议增大了选举随机性,引入近乎纳什均衡的激励机制进一步提高PoS 的安全性。PoRep(proof-of-replication)[41]应用于去中心化存储网络,利用证明依据作为贡献存储空间的奖励,促进存储资源再利用。
BFT协议有较长的发展史,在区块链研究中被赋予了新的活力。SCP[42]和Ripple[43]基于联邦拜占庭共识[44]——存在交集的多池(确定规模的联邦)共识,分别允许节点自主选择或与指定的节点构成共识联邦,通过联邦交集达成全网共识。Tendermint[45]使用Gossip通信协议基本实现异步拜占庭共识,不仅简化了流程而且提高了可用性。HotStuff[46]将BFT与链式结构数据相结合,使主节点能够以实际网络时延及 O(n)通信复杂度推动协议达成一致。LibraBFT[47]在HotStuff的基础上加入奖惩机制及节点替换机制,从而优化了性能。
Hybrid 类协议是研究趋势之一。PoA[48]利用PoW产生空区块头,利用PoS决定由哪些节点进行记账和背书,其奖励由背书节点和出块节点共享。PeerCensus[49]由节点团体进行拜占庭协议实现共识,而节点必须基于比特币网络,通过 PoW 产出区块后才能获得投票权力。ByzCoin[50]利用PoW的算力特性构建动态成员关系,并引入联合签名方案来减小PBFT的轮次通信开销,提高交易吞吐量,降低确认时延。Casper[51]则通过PoS的股份决定节点构成团体并进行BFT共识,且节点可投票数取决于股份。
3.4 控制层
区块链节点基于对等通信网络与基础数据结构进行区块交互,通过共识协议实现数据一致,从而形成了全网统一的账本。控制层是各类应用与账本产生交互的中枢,如果将账本比作数据库,那么控制层提供了数据库模型,以及相应封装、操作的方法。具体而言,控制层由处理模型、控制合约和执行环境组成。处理模型从区块链系统的角度分析和描述业务/交易处理方式的差异。控制合约将业务逻辑转化为交易、区块、账本的具体操作。执行环境为节点封装通用的运行资源,使区块链具备稳定的可移植性。
1) 处理模型
账本用于存储全部或部分业务数据,那么依据该数据的分布特征可将处理模型分为链上(on-chain)和链下(off-chain)2种。
链上模型是指业务数据完全存储在账本中,业务逻辑通过账本的直接存取实现数据交互。该模型的信任基础建立在强关联性的账本结构中,不仅实现防篡改而且简化了上层控制逻辑,但是过量的资源消耗与庞大的数据增长使系统的可扩展性达到瓶颈,因此该模型适用于数据量小、安全性强、去中心化和透明程度高的业务。
链下模型是指业务数据部分或完全存储在账本之外,只在账本中存储指针以及其他证明业务数据存在性、真实性和有效性的数据。该模型以“最小化信任成本”为准则,将信任基础建立在账本与链下数据的证明机制中,降低账本构建成本。由于与公开的账本解耦,该模型具有良好的隐私性和可拓展性,适用于去中心化程度低、隐私性强、吞吐量大的业务。
2) 控制合约
区块链中控制合约经历了2个发展阶段,首先是以比特币为代表的非图灵完备的自动化脚本,用于锁定和解锁基于UTXO信息模型的交易,与强关联账本共同克服了双花等问题,使交易数据具备流通价值。其次是以以太坊为代表的图灵完备的智能合约,智能合约是一种基于账本数据自动执行的数字化合同,由开发者根据需求预先定义,是上层应用将业务逻辑编译为节点和账本操作集合的关键。智能合约通过允许相互不信任的参与者在没有可信第三方的情况下就复杂合同的执行结果达成协议,使合约具备可编程性,实现业务逻辑的灵活定义并扩展区块链的使用。
3) 执行环境
执行环境是指执行控制合约所需要的条件,主要分为原生环境和沙盒环境。原生环境是指合约与节点系统紧耦合,经过源码编译后直接执行,该方式下合约能经历完善的静态分析,提高安全性。沙盒环境为节点运行提供必要的虚拟环境,包括网络通信、数据存储以及图灵完备的计算/控制环境等,在虚拟机中运行的合约更新方便、灵活性强,其产生的漏洞也可能造成损失。
4) 研究现状
控制层的研究方向主要集中在可扩展性优化与安全防护2个方面。
侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷。Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花。Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余。分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载。ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证。OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性。区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障。上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案。实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付。Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认。
一方面,沙盒环境承载了区块链节点运行条件,针对虚拟机展开的攻击更为直接;另一方面,智能合约直接对账本进行操作,其漏洞更易影响业务运行,因此控制层的安全防护研究成为热点。Luu等[59]分析了运行于EVM中的智能合约安全性,指出底层平台的分布式语义差异带来的安全问题。Brent 等[60]提出智能合约安全分析框架 Vandal,将EVM 字节码转换为语义逻辑关,为分析合约安全漏洞提供便利。Jiang 等[61]预先定义用于安全漏洞的特征,然后模拟执行大规模交易,通过分析日志中的合约行为实现漏洞检测。
4 技术选型分析
区别于其他技术,区块链发展过程中最显著的特点是与产业界紧密结合,伴随着加密货币和分布式应用的兴起,业界出现了许多区块链项目。这些项目是区块链技术的具体实现,既有相似之处又各具特点,本节将根据前文所述层次化结构对比特币、以太坊和超级账本Fabric项目进行分析,然后简要介绍其他代表性项目并归纳和对比各项目的技术选型及特点。
4.1 比特币
比特币是目前规模最大、影响范围最广的非许可链开源项目。图9为比特币项目以账本为核心的运行模式,也是所有非许可链项目的雏形。比特币网络为用户提供兑换和转账业务,该业务的价值流通媒介由账本确定的交易数据——比特币支撑。为了保持账本的稳定和数据的权威性,业务制定奖励机制,即账本为节点产生新的比特币或用户支付比特币,以此驱动节点共同维护账本。
图9
新窗口打开|
下载原图ZIP|
生成PPT
图9
比特币运行模式
比特币网络主要由2种节点构成:全节点和轻节点。全节点是功能完备的区块链节点,而轻节点不存储完整的账本数据,仅具备验证与转发功能。全节点也称为矿工节点,计算证明依据的过程被称为“挖矿”,目前全球拥有近 1 万个全节点;矿池则是依靠奖励分配策略将算力汇集起来的矿工群;除此之外,还有用于存储私钥和地址信息、发起交易的客户端(钱包)。
1) 网络层
比特币在网络层采用非结构化方式组网,路由表呈现随机性。节点间则采用多点传播方式传递数据,曾基于Gossip协议实现,为提高网络的抗匿名分析能力改为基于Diffusion协议实现[33]。节点利用一系列控制协议确保链路的可用性,包括版本获取(Vetsion/Verack)、地址获取(Addr/GetAddr)、心跳信息(PING/PONG)等。新节点入网时,首先向硬编码 DNS 节点(种子节点)请求初始节点列表;然后向初始节点随机请求它们路由表中的节点信息,以此生成自己的路由表;最后节点通过控制协议与这些节点建立连接,并根据信息交互的频率更新路由表中节点时间戳,从而保证路由表中的节点都是活动的。交互逻辑层为建立共识交互通道,提供了区块获取(GetBlock)、交易验证(MerkleBlock)、主链选择(CmpctBlock)等协议;轻节点只需要进行简单的区块头验证,因此通过头验证(GetHeader/Header)协议和连接层中的过滤设置协议指定需要验证的区块头即可建立简单验证通路。在安全机制方面,比特币网络可选择利用匿名通信网络Tor作为数据传输承载,通过沿路径的层层数据加密机制来保护对端身份。
2) 数据层
比特币数据层面的技术选型已经被广泛研究,使用UTXO信息模型记录交易数据,实现所有权的简单、有效证明,利用 MKT、散列函数和时间戳实现区块的高效验证并产生强关联性。在加密机制方面,比特币采用参数为Secp256k1的椭圆曲线数字签名算法(ECDSA,elliptic curve digital signature algorithm)生成用户的公私钥,钱包地址则由公钥经过双重散列、Base58Check 编码等步骤生成,提高了可读性。
3) 共识层
比特币采用 PoW 算法实现节点共识,该算法证明依据中的阈值设定可以改变计算难度。计算难度由每小时生成区块的平均块数决定,如果生成得太快,难度就会增加。该机制是为了应对硬件升级或关注提升引起的算力变化,保持证明依据始终有效。目前该阈值被设定为10 min产出一个区块。除此之外,比特币利用奖惩机制保证共识的可持续运行,主要包括转账手续费、挖矿奖励和矿池分配策略等。
4) 控制层
比特币最初采用链上处理模型,并将控制语句直接记录在交易中,使用自动化锁定/解锁脚本验证UTXO模型中的比特币所有权。由于可扩展性和确认时延的限制,比特币产生多个侧链项目如Liquid、RSK、Drivechain等,以及链下处理项目Lightning Network等,从而优化交易速度。
4.2 以太坊
以太坊是第一个以智能合约为基础的可编程非许可链开源平台项目,支持使用区块链网络构建分布式应用,包括金融、音乐、游戏等类型;当满足某些条件时,这些应用将触发智能合约与区块链网络产生交互,以此实现其网络和存储功能,更重要的是衍生出更多场景应用和价值产物,例如以太猫,利用唯一标识为虚拟猫赋予价值;GitCoin,众筹软件开发平台等。
1) 网络层
以太坊底层对等网络协议簇称为DEVP2P,除了满足区块链网络功能外,还满足与以太坊相关联的任何联网应用程序的需求。DEVP2P将节点公钥作为标识,采用 Kademlia 算法计算节点的异或距离,从而实现结构化组网。DEVP2P主要由3种协议组成:节点发现协议RLPx、基础通信协议Wire和扩展协议Wire-Sub。节点间基于Gossip实现多点传播;新节点加入时首先向硬编码引导节点(bootstrap node)发送入网请求;然后引导节点根据Kademlia 算法计算与新节点逻辑距离最近的节点列表并返回;最后新节点向列表中节点发出握手请求,包括网络版本号、节点ID、监听端口等,与这些节点建立连接后则使用Ping/Pong机制保持连接。Wire子协议构建了交易获取、区块同步、共识交互等逻辑通路,与比特币类似,以太坊也为轻量级钱包客户端设计了简易以太坊协议(LES,light ethereum subprotocol)及其变体PIP。安全方面,节点在RLPx协议建立连接的过程中采用椭圆曲线集成加密方案(ECIES)生成公私钥,用于传输共享对称密钥,之后节点通过共享密钥加密承载数据以实现数据传输保护。
2) 数据层
以太坊通过散列函数维持区块的关联性,采用MPT实现账户状态的高效验证。基于账户的信息模型记录了用户的余额及其他 ERC 标准信息,其账户类型主要分为2类:外部账户和合约账户;外部账户用于发起交易和创建合约,合约账户用于在合约执行过程中创建交易。用户公私钥的生成与比特币相同,但是公钥经过散列算法Keccak-256计算后取20 B作为外部账户地址。
3) 共识层
以太坊采用 PoW 共识,将阈值设定为 15 s产出一个区块,计划在未来采用PoS或Casper共识协议。较低的计算难度将导致频繁产生分支链,因此以太坊采用独有的奖惩机制——GHOST 协议,以提高矿工的共识积极性。具体而言,区块中的散列值被分为父块散列和叔块散列,父块散列指向前继区块,叔块散列则指向父块的前继。新区块产生时,GHOST 根据前 7 代区块的父/叔散列值计算矿工奖励,一定程度弥补了分支链被抛弃时浪费的算力。
4) 控制层
每个以太坊节点都拥有沙盒环境 EVM,用于执行Solidity语言编写的智能合约;Solidity语言是图灵完备的,允许用户方便地定义自己的业务逻辑,这也是众多分布式应用得以开发的前提。为优化可扩展性,以太坊拥有侧链项目 Loom、链下计算项目Plasma,而分片技术已于2018年加入以太坊源码。
4.3 超级账本Fabric
超级账本是Linux基金会旗下的开源区块链项目,旨在提供跨行业区块链解决方案。Fabric 是超级账本子项目之一,也是影响最广的企业级可编程许可链项目;在已知的解决方案中,Fabric 被应用于供应链、医疗和金融服务等多种场景。
1) 网络层
Fabric 网络以组织为单位构建节点集群,采用混合式对等网络组网;每个组织中包括普通节点和锚节点(anchor peer),普通节点完成组织内的消息路由,锚节点负责跨组织的节点发现与消息路由。Fabric网络传播层基于Gossip实现,需要使用配置文件初始化网络,网络生成后各节点将定期广播存活信息,其余节点根据该信息更新路由表以保持连接。交互逻辑层采用多通道机制,即相同通道内的节点才能进行状态信息交互和区块同步。Fabric 为许可链,因此在网络层采取严苛的安全机制:节点被颁发证书及密钥对,产生PKI-ID进行身份验证;可选用 TLS 双向加密通信;基于多通道的业务隔离;可定义策略指定通道内的某些节点对等传输私有数据。
2) 数据层
Fabric的区块中记录读写集(read-write set)描述交易执行时的读写过程。该读写集用于更新状态数据库,而状态数据库记录了键、版本和值组成的键值对,因此属于键值对信息模型。一方面,散列函数和 MerkleTree 被用作高效关联结构的实现技术;另一方面,节点还需根据键值验证状态数据库与读写集中的最新版本是否一致。许可链场景对匿名性的要求较低,但对业务数据的隐私性要求较高,因此Fabric 1.2版本开始提供私有数据集(PDC,private data collection)功能。
3) 共识层
Fabric在0.6版本前采用PBFT 共识协议,但是为了提高交易吞吐量,Fabric 1.0 选择降低安全性,将共识过程分解为排序和验证2种服务,排序服务采用CFT类协议Kafka、Raft(v1.4之后)完成,而验证服务进一步分解为读写集验证与多签名验证,最大程度提高了共识速度。由于Fabric针对许可链场景,参与方往往身份可知且具有相同的合作意图,因此规避了节点怠工与作恶的假设,不需要奖惩机制调节。
4) 控制层
Fabric 对于扩展性优化需求较少,主要得益于共识层的优化与许可链本身参与节点较少的前提,因此主要采用链上处理模型,方便业务数据的存取;而 PDC 中仅将私有数据散列值上链的方式则属于链下处理模型,智能合约可以在本地进行数据存取。Fabric 节点采用模块化设计,基于 Docker构建模块执行环境;智能合约在Fabric中被称为链码,使用GO、Javascript和Java语言编写,也是图灵完备的。
4.4 其他项目
除了上述3种区块链基础项目外,产业界还有许多具有代表性的项目,如表1所示。
5 区块链应用研究
区块链技术有助于降低金融机构间的审计成本,显著提高支付业务的处理速度及效率,可应用于跨境支付等金融场景。除此之外,区块链还应用于产权保护、信用体系建设、教育生态优化、食品安全监管、网络安全保障等非金融场景。
根据这些场景的应用方式以及区块链技术特点,可将区块链特性概括为如下几点。1) 去中心化。节点基于对等网络建立通信和信任背书,单一节点的破坏不会对全局产生影响。2) 不可篡改。账本由全体节点维护,群体协作的共识过程和强关联的数据结构保证节点数据一致且基本无法被篡改,进一步使数据可验证和追溯。3) 公开透明。除私有数据外,链上数据对每个节点公开,便于验证数据的存在性和真实性。4) 匿名性。多种隐私保护机制使用户身份得以隐匿,即便如此也能建立信任基础。5) 合约自治。预先定义的业务逻辑使节点可以基于高可信的账本数据实现自治,在人-人、人-机、机-机交互间自动化执行业务。
鉴于上述领域的应用在以往研究中均有详细描述,本文将主要介绍区块链在智慧城市、边缘计算和人工智能领域的前沿应用研究现状。
表1
表1
代表性区块链项目
技术选型CordaQuorumLibraBlockstackFilecoinZcash控制合约Kotlin,JavaGOMoveClarity非图灵完备非图灵完备非图灵完备执行环境JVMEVMMVM源码编译源码编译源码编译处理模型链上链上/链下(私有数据)链上链下(虚拟链)链下(IPFS)链上奖惩机制——Libra coinsStacks tokenFilecoinZcash/Turnstiles共识算法Notary 机制/RAFT,BFT-SMaRtQuorum-Chain,RAFTLibraBFTTunable Proofs,proof-of-burnPoRep,PoETPoW信息模型UTXO基于账户基于账户基于账户基于账户UTXO关联验证结构散列算法MKT散列算法MPT散列算法MKT散列算法Merklized Adaptive Radix Forest (MARF)散列算法MKT散列算法MKT加密机制Tear-offs机制、混合密钥基于EnclaveSHA3-256/EdDSA基于Gaia/Blockstack AuthSECP256K1/BLSzk-SNARK组网方式混合型结构化混合型无结构结构化/无结构无结构通信机制AMQP1.0/单点传播Wire/GossipNoise-ProtocolFramework/GossipAtlas/GossipLibp2p/GossipBitcoin-Core/Gossip安全机制Corda加密套件/TLS证书/HTTPSDiffie-HellmanSecure BackboneTLSTor区块链类型许可链许可链许可链非许可链非许可链非许可链特点只允许对实际参与给定交易的各方进行信息访问和验证功能基于以太坊网络提供公共交易和私有交易2种交互渠道稳定、快速的交易网络剔除中心服务商的、可扩展的分布式数据存储设施,旨在保护隐私数据激励机制驱动的存储资源共享生态基于比特币网络提供零知识证明的隐私保护应用场景金融业务平台分布式应用加密货币互联网基础设施文件存储与共享加密货币
新窗口打开|
下载CSV
5.1 智慧城市
智慧城市是指利用 ICT 优化公共资源利用效果、提高居民生活质量、丰富设施信息化能力的研究领域,该领域包括个人信息管理、智慧医疗、智慧交通、供应链管理等具体场景。智慧城市强调居民、设施等各类数据的采集、分析与使能,数据可靠性、管理透明化、共享可激励等需求为智慧城市带来了许多技术挑战。区块链去中心化的交互方式避免了单点故障、提升管理公平性,公开透明的账本保证数据可靠及可追溯性,多种匿名机制利于居民隐私的保护,因此区块链有利于问题的解决。Hashemi等[62]将区块链用于权限数据存储,构建去中心化的个人数据接入控制模型;Bao等[63]利用区块链高效认证和管理用户标识,保护车主的身份、位置、车辆信息等个人数据。
5.2 边缘计算
边缘计算是一种将计算、存储、网络资源从云平台迁移到网络边缘的分布式信息服务架构,试图将传统移动通信网、互联网和物联网等业务进行深度融合,减少业务交付的端到端时延,提升用户体验。安全问题是边缘计算面临的一大技术挑战,一方面,边缘计算的层次结构中利用大量异构终端设备提供用户服务,这些设备可能产生恶意行为;另一方面,服务迁移过程中的数据完整性和真实性需要得到保障。区块链在这种复杂的工作环境和开放的服务架构中能起到较大作用。首先,区块链能够在边缘计算底层松散的设备网络中构建不可篡改的账本,提供设备身份和服务数据验证的依据。其次,设备能在智能合约的帮助下实现高度自治,为边缘计算提供设备可信互操作基础。Samaniego等[64]提出了一种基于区块链的虚拟物联网资源迁移架构,通过区块链共享资源数据从而保障安全性。Stanciu[65]结合软件定义网络(SDN)、雾计算和区块链技术提出分布式安全云架构,解决雾节点中SDN控制器流表策略的安全分发问题。Ziegler等[66]基于 Plasma 框架提出雾计算场景下的区块链可扩展应用方案,提升雾计算网关的安全性。
5.3 人工智能
人工智能是一类智能代理的研究,使机器感知环境/信息,然后进行正确的行为决策,正确是指达成人类预定的某些目标。人工智能的关键在于算法,而大部分机器学习和深度学习算法建立于体积庞大的数据集和中心化的训练模型之上,该方式易受攻击或恶意操作使数据遭到篡改,其后果为模型的不可信与算力的浪费。此外,数据采集过程中无法确保下游设备的安全性,无法保证数据来源的真实性与完整性,其后果将在自动驾驶等场景中被放大。区块链不可篡改的特性可以实现感知和训练过程的可信。另外,去中心化和合约自治特性为人工智能训练工作的分解和下放奠定了基础,保障安全的基础上提高计算效率。Kim等[67]利用区块链验证联合学习框架下的分发模型的完整性,并根据计算成本提供相应的激励,优化整体学习效果。Bravo-Marquez 等[68]提出共识机制“学习证明”以减轻PoX类共识的计算浪费,构建公共可验证的学习模型和实验数据库。
6 技术挑战与研究展望
6.1 层次优化与深度融合
区块链存在“三元悖论”——安全性、扩展性和去中心化三者不可兼得,只能依靠牺牲一方的效果来满足另外两方的需求。以比特币为代表的公链具有较高的安全性和完全去中心化的特点,但是资源浪费等问题成为拓展性优化的瓶颈。尽管先后出现了PoS、BFT等共识协议优化方案,或侧链、分片等链上处理模型,或Plasma、闪电网络等链下扩展方案,皆是以部分安全性或去中心化为代价的。因此,如何将区块链更好地推向实际应用很大程度取决于三元悖论的解决,其中主要有2种思路。
1) 层次优化
区块链层次化结构中每层都不同程度地影响上述3种特性,例如网络时延、并行读写效率、共识速度和效果、链上/链下模型交互机制的安全性等,对区块链的优化应当从整体考虑,而不是单一层次。
网络层主要缺陷在于安全性,可拓展性则有待优化。如何防御以 BGP 劫持为代表的网络攻击将成为区块链底层网络的安全研究方向[19]。信息中心网络将重塑区块链基础传输网络,通过请求聚合和数据缓存减少网内冗余流量并加速通信传输[69]。相比于数据层和共识层,区块链网络的关注度较低,但却是影响安全性、可拓展性的基本因素。
数据层的优化空间在于高效性,主要为设计新的数据验证结构与算法。该方向可以借鉴计算机研究领域的多种数据结构理论与复杂度优化方法,寻找适合区块链计算方式的结构,甚至设计新的数据关联结构。实际上相当一部分项目借鉴链式结构的思想开辟新的道路,例如压缩区块空间的隔离见证、有向无环图(DAG)中并行关联的纠缠结构(Tangle),或者Libra项目采用的状态树。
共识机制是目前研究的热点,也是同时影响三元特性的最难均衡的层次。PoW牺牲可拓展性获得完全去中心化和安全性,PoS高效的出块方式具备可扩展性但产生了分叉问题,POA结合两者做到了3种特性的均衡。以此为切入的Hybrid类共识配合奖惩机制的机动调节取得了较好效果,成为共识研究的过渡手段,但是如何做到三元悖论的真正突破还有待研究。
控制层面是目前可扩展性研究的热点,其优势在于不需要改变底层的基础实现,能够在短期内应用,集中在产业界的区块链项目中。侧链具有较好的灵活性但操作复杂度高,分片改进了账本结构但跨分片交互的安全问题始终存在,而链下处理模型在安全方面缺少理论分析的支撑。因此,三元悖论的解决在控制层面具有广泛的研究前景。
2) 深度融合
如果将层次优化称为横向优化,那么深度融合即为根据场景需求而进行的纵向优化。一方面,不同场景的三元需求并不相同,例如接入控制不要求完全去中心化,可扩展性也未遇到瓶颈,因此可采用BFT类算法在小范围构建联盟链。另一方面,区块链应用研究从简单的数据上链转变为链下存储、链上验证,共识算法从 PoW 转变为场景结合的服务证明和学习证明,此外,结合 5G 和边缘计算可将网络和计算功能移至网络边缘,节约终端资源。这意味着在严格的场景建模下,区块链的层次技术选型将与场景特点交叉创新、深度融合,具有较为广阔的研究前景。
6.2 隐私保护
加密货币以匿名性著称,但是区块链以非对称加密为基础的匿名体系不断受到挑战。反匿名攻击从身份的解密转变为行为的聚类分析,不仅包括网络流量的IP聚类,还包括交易数据的地址聚类、交易行为的启发式模型学习,因此大数据分析技术的发展使区块链隐私保护思路发生转变。已有Tor网络、混币技术、零知识证明、同态加密以及各类复杂度更高的非对称加密算法被提出,但是各方法仍有局限,未来将需要更为高效的方法。此外,随着区块链系统的可编程化发展,内部复杂性将越来越高,特别是智能合约需要更严格、有效的代码检测方法,例如匿名性检测、隐私威胁预警等。
6.3 工业区块链
工业区块链是指利用区块链夯实工业互联网中数据的流通和管控基础、促进价值转换的应用场景,具有较大的研究前景。
工业互联网是面向制造业数字化、网络化、智能化需求,构建基于海量数据采集、汇聚、分析的服务体系,支撑制造资源泛在连接、弹性供给、高效配置的重要基础设施。“工业互联网平台”是工业互联网的核心,通过全面感知、实时分析、科学决策、精准执行的逻辑闭环,实现工业全要素、全产业链、全价值链的全面贯通,培育新的模式和业态。
可以看到,工业互联网与物联网、智慧城市、消费互联网等场景应用存在内在关联,例如泛在连接、数据共享和分析、电子商务等,那么其学术问题与技术实现必然存在关联性。区块链解决了物联网中心管控架构的单点故障问题,克服泛在感知设备数据的安全性和隐私性挑战,为智慧城市场景的数据共享、接入控制等问题提供解决方法,为激励资源共享构建了新型互联网价值生态。尽管工业互联网作为新型的产业生态系统,其技术体系更复杂、内涵更丰富,但是不难想象,区块链同样有利于工业互联网的发展。
“平台+区块链”能够通过分布式数据管理模式,降低数据存储、处理、使用的管理成本,为工业用户在工业 APP 选择和使用方面搭建起更加可信的环境,实现身份认证及操作行为追溯、数据安全存储与可靠传递。能够通过产品设计参数、质量检测结果、订单信息等数据“上链”,实现有效的供应链全要素追溯与协同服务。能够促进平台间数据交易与业务协同,实现跨平台交易结算,带动平台间的数据共享与知识复用,促进工业互联网平台间互联互通。
当然,工业是关乎国计民生的产业,将区块链去中心化、匿名化等特性直接用于工业互联网是不可取的,因此需要研究工业区块链管理框架,实现区块链的可管可控,在一定范围内发挥其安全优势,并对工业互联网的运转提供正向激励。
7 结束语
区块链基于多类技术研究的成果,以低成本解决了多组织参与的复杂生产环境中的信任构建和隐私保护等问题,在金融、教育、娱乐、版权保护等场景得到了较多应用,成为学术界的研究热点。比特币的出现重塑了人们对价值的定义,伴随着产业界的呼声,区块链技术得到了快速发展,而遵循区块链层次化分析方法,能够直观地区别各项目的技术路线和特点,为优化区块链技术提供不同观察视角,并为场景应用的深度融合创造条件,促进后续研究。未来的发展中,区块链将成为更为基础的信任支撑技术,在产业互联网等更广阔的领域健康、有序地发展。
The authors have declared that no competing interests exist.
作者已声明无竞争性利益关系。
参考文献
View Option
原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
[1]
袁勇, 王飞跃 . 区块链技术发展现状与展望[J]. 自动化学报, 2016,42(4): 481-494.
[本文引用: 1]
YUAN Y , WANG F Y . Blockchain:the state of the art and future trends[J]. Acta Automatica Sinica, 2016,42(4): 481-494.
[本文引用: 1]
[2]
邵奇峰, 张召, 朱燕超 ,等. 企业级区块链技术综述[J]. 软件学报, 2019,30(9): 2571-2592.
[本文引用: 1]
SHAO Q F , ZHANG Z , ZHU Y C ,et al. Survey of enterprise blockchains[J]. 2019,30(9): 2571-2592.
[本文引用: 1]
[3]
YANG W , AGHASIAN E , GARG S ,et al. A survey on blockchain-based internet service architecture:requirements,challenges,trends,and future[J]. IEEE Access, 2019,7: 75845-75872.
[本文引用: 1]
[4]
韩璇, 袁勇, 王飞跃 . 区块链安全问题:研究现状与展望[J]. 自动化学报, 2019,45(1): 208-227.
[本文引用: 1]
HAN X , YUAN Y , WANG F Y . Security problems on blockchain:the state of the art and future trends[J]. Acta Automatica Sinica, 2016,45(1): 208-227.
[本文引用: 1]
[5]
ALI M , VECCHIO M , PINCHEIRA M ,et al. Applications of blockchains in the Internet of things:a comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2019,21: 1676-1717.
[本文引用: 1]
[6]
CHAUM D . Blind signature system[M]. Advances in Cryptology: Proceedings of Crypto 83.Springer USPress, 1984.
[本文引用: 1]
[7]
LAW L , SABEET S , SOLINAS J . How to make a mint:the cryptography of anonymous electronic cash[J]. The American University Law Review, 1997,46: 1131-1162.
[本文引用: 1]
[8]
JAKOBSSON M , JUELS A . Proofs of work and bread pudding protocols[C]// IFIP TC6/TC11 Joint Working Conference on Communications and Multimedia Security. IFIP, 1999: 258-272.
[本文引用: 1]
[9]
王学龙, 张璟 . P2P 关键技术研究综述[J]. 计算机应用研究, 2010,27(3): 801-805.
[本文引用: 1]
WANG X L , ZHANG J . Survey on peer-to-peer key technologies[J]. Application Research of Computers, 2010,27(3): 801-805.
[本文引用: 1]
[10]
DEMERS A , GREENE D , HOUSER C ,et al. Epidemic algorithms for replicated database maintenance[J]. ACM SIGOPS Operating Systems Review, 1988,22: 8-32.
[本文引用: 1]
[11]
DECKER C , WATTENHOFER R . Information propagation in the bitcoin network[C]// IEEE Thirteenth International Conference on Peer-to-peer Computing. IEEE, 2013: 1-10.
[本文引用: 1]
[12]
FADHIL M , OWENSON G , ADDA M . Locality based approach to improve propagation delay on the bitcoin peer-to-peer network[C]// 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). IEEE, 2017: 556-559.
[本文引用: 1]
[13]
KANEKO Y , ASAKA T . DHT clustering for load balancing considering blockchain data size[C]// 2018 Sixth International Symposium on Computing and Networking Workshops (CANDARW). IEEE Computer Society, 2018: 71-74.
[本文引用: 1]
[14]
KOSHY P , KOSHY D , MCDANIEL P . An analysis of anonymity in bitcoin using P2P network traffic[C]// Financial Cryptography and Data Security:18th International Conference. Springer, 2014: 469-485.
[15]
BIRYUKOV A , KHOVRATOVICH D , PUSTOGAROV I . Deanonymisation of clients in bitcoin P2P network[C]// ACM SIGSAC Conference on Computer and Communications Security. ACM, 2014: 15-29.
[16]
VENKATAKRISHNAN S B , FANTI G , VISWANATH P . Dandelion:redesigning the bitcoin network for anonymity[C]// The 2017 ACM SIGMETRICS. ACM, 2017:57.
[本文引用: 1]
[17]
FANTI G , VENKATAKRISHNAN S B , BAKSHI S ,et al. Dandelion++:lightweight cryptocurrency networking with formal anonymity guarantees[J]. ACM SIGMETRICS Performance Evaluation Review, 2018,46: 5-7.
[本文引用: 1]
[18]
HEILMAN E , KENDLER A , ZOHAR A ,et al. Eclipse attacks on Bitcoin’s peer-to-peer network[C]// USENIX Conference on Security Symposium. USENIX Association, 2015: 129-144.
[本文引用: 1]
[19]
APOSTOLAKI M , ZOHAR A , VANBEVER L . Hijacking bitcoin:routing attacks on cryptocurrencies[C]// 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 2017: 375-392.
[本文引用: 2]
[20]
REYZIN L , IVANOV S . Improving authenticated dynamic dictionaries,with applications to cryptocurrencies[C]// International Conference on Financial Cryptography & Data Security. Springer, 2017: 376-392.
[本文引用: 1]
[21]
ZHANG C , XU C , XU J L ,et al. GEM^2-tree:a gas-efficient structure for authenticated range queries in blockchain[C]// IEEE 35th International Conference on Data Engineering (ICDE). IEEE, 2019: 842-853.
[本文引用: 1]
[22]
REID F , HARRIGAN M . An analysis of anonymity in the bitcoin system[C]// 2011 IEEE Third International Conference on Privacy,Security,Risk and Trust. IEEE, 2011: 1318-1326.
[本文引用: 1]
[23]
MEIKLEJOHN S , POMAROLE M , JORDAN G ,et al. A fistful of bitcoins:characterizing payments among men with no names[C]// The 2013 Conference on Internet Measurement Conference. ACM, 2013: 127-140.
[本文引用: 1]
[24]
AWAN M K , CORTESI A . Blockchain transaction analysis using dominant sets[C]// IFIP International Conference on Computer Information Systems and Industrial Management. IFIP, 2017: 229-239.
[本文引用: 1]
[25]
SAXENA A , MISRA J , DHAR A . Increasing anonymity in bitcoin[C]// International Conference on Financial Cryptography and Data Security. Springer, 2014: 122-139.
[本文引用: 1]
[26]
MIERS I , GARMAN C , GREEN M ,et al. Zerocoin:anonymous distributed e-cash from bitcoin[C]// 2013 IEEE Symposium on Security and Privacy. IEEE, 2013: 397-411.
[本文引用: 1]
[27]
SASSON E B , CHIESA A , GARMAN C ,et al. Zerocash:decentralized anonymous payments from bitcoin[C]// 2014 IEEE Symposium on Security and Privacy (SP). IEEE, 2014: 459-474.
[本文引用: 1]
[28]
YIN W , WEN Q , LI W ,et al. A anti-quantum transaction authentication approach in blockchain[J]. IEEE Access, 2018,6: 5393-5401.
[本文引用: 1]
[29]
DOUCEUR J R , . The sybil attack[C]// The First International Workshop on Peer-to-Peer Systems(IPTPS’ 01). Springer, 2002: 251-260.
[本文引用: 1]
[30]
KARAME G O , ANDROULAKI E , CAPKUN S . Double-spending fast payments in bitcoin[C]// The 2012 ACM conference on Computer and communications security. ACM, 2012: 906-917.
[本文引用: 1]
[31]
LAMPORT L , SHOSTAK R , PEASE M . The byzantine generals problem[J]. ACM Transactions on Programming Languages and Systems, 1982,4: 382-401.
[本文引用: 1]
[32]
BANO S , SONNINO A , AL-BASSAM M ,et al. Consensus in the age of blockchains[J]..03936,2017. arXiv Preprint,arXiv:1711.03936,2017.
[本文引用: 1]
[33]
DWORK C , LYNCH N , STOCKMEYER L . Consensus in the presence of partial synchrony[J]. Journal of the ACM, 1988,35: 288-323.
[本文引用: 2]
[34]
TSCHORSCH F , SCHEUERMANN B . Bitcoin and beyond:a technical survey on decentralized digital currencies[J]. IEEE Communications Surveys & Tutorials, 2016,18: 2084-2123.
[本文引用: 1]
[35]
CACHIN C VUKOLIĆ M . Blockchains consensus protocols in the wild[J]. arXiv Preprint,arXiv:1707.01873, 2017.
[本文引用: 1]
[36]
CASTRO M , LISKOV B . Practical byzantine fault tolerance and proactive recovery[J]. ACM Transactions on Computer Systems, 2002,20: 398-461.
[本文引用: 1]
[37]
ONGARO D , OUSTERHOUT J . In search of an understandable consensus algorithm[C]// The 2014 USENIX Conference on USENIX Annual Technical Conference. USENIX Association, 2015: 305-320.
[本文引用: 1]
[38]
BALL M , ROSEN A , SABIN M ,et al. Proofs of useful work[R]. Cryptology ePrint Archive:Report 2017/203.
[本文引用: 1]
[39]
MIHALJEVIC B , ZAGAR M . Comparative analysis of blockchain consensus algorithms[C]// International Convention on Information and Communication Technology,Electronics and Microelectronics (MIPRO). IEEE, 2018: 1545-1550.
[本文引用: 1]
[40]
KIAYIAS A , RUSSELL A , DAVID B ,et al. Ouroboros:a provably secure proof-of-stake blockchain protocol[C]// Advances in Cryptology - CRYPTO 2017. Springer, 2017: 357-388.
[本文引用: 1]
[41]
FISCH B . Tight proofs of space and replication[J].,ePrint-2018-702. IACR Cryptology ePrint Archive,ePrint-2018-702.
[本文引用: 1]
[42]
BELOTTI M , BOŽIĆ N , PUJOLLE G ,et al. A vademecum on blockchain technologies:when,which,and how[J]. IEEE Communications Surveys & Tutorials, 2019,21: 3796-3838.
[本文引用: 1]
[43]
WANG W B , HOANG D T , HU P Z ,et al. A survey on consensus mechanisms and mining strategy management in blockchain networks[J]. IEEE Access, 2019,7: 22328-22370.
[本文引用: 1]
[44]
YOO J H , JUNG Y L , SHIN D H ,et al. Formal modeling and verification of a federated byzantine agreement algorithm for blockchain platforms[C]// IEEE International Workshop on Blockchain Oriented Software Engineering. 2019: 11-21.
[本文引用: 1]
[45]
ZHENG Z B , XIE S , DAI H ,et al. An overview of blockchain technology:architecture,consensus,and future trends[C]// 6th IEEE International Congress on Big Data. IEEE, 2017: 557-564.
[本文引用: 1]
[46]
YIN M , MALKHI D , REITER M K ,et al. HotStuff:BFT consensus in the lens of blockchain[C]// ACM Symposium on Principles of Distributed Computing. ACM, 2019: 347-356.
[本文引用: 1]
[47]
ALI S , WANG G , WHITE B ,et al. Libra critique towards global decentralized financial system[C]// Communications in Computer and Information Science. Springer, 2019: 661-672.
[本文引用: 1]
[48]
BENTOV I , LEE C , MIZRAHI A ,et al. Proof of activity:extending bitcoin’s proof of work via proof of stake[J]. IACR Cryptology ePrint Archive,ePrint-2014-25478.
[本文引用: 1]
[49]
DECKER C , SEIDEL J , WATTENHOFER R . Bitcoin meets strong consistency[J].,2014. arXiv Preprint,arXiv:1412.7935,2014.
[本文引用: 1]
[50]
KOKORIS-KOGIAS E , JOVANOVIC P , GAILLY N ,et al. Enhancing bitcoin security and performance with strong consistency via collective signing[J]. Applied Mathematical Modelling, 2016,37: 5723-5742.
[本文引用: 1]
[51]
BUTERIN V , GRIFFITH V . Casper the friendly finality gadget[J]. arXiv Preprint,arXiv:1710.09437,2017.
[本文引用: 1]
[52]
TSCHORSCH F , SCHEUERMANN B . Bitcoin and beyond:a technical survey on decentralized digital currencies[J]. IEEE Communications Surveys & Tutorials, 2016,18: 2084-2023,2017.
[本文引用: 1]
[53]
KIAYIAS A , MILLER A , ZINDROS D . Non-interactive proofs of proof-of-work[J]. IACR Cryptology ePrint Archive,ePrint-2017-963.
[本文引用: 1]
[54]
LUU L , NARAYANAN V , ZHENG C ,et al. A secure sharding protocol for open blockchains[C]// The 2016 ACM SIGSAC Conference on Computer and Communications Security(CCS’16). ACM, 2016: 17-30.
[本文引用: 1]
[55]
KOKORIS-KOGIAS E , JOVANOVIC P , GASSER L ,et al. OmniLedger:a secure,scale-out,decentralized ledger via sharding[C]// IEEE Symposium on Security and Privacy (SP). IEEE Computer Society, 2018: 583-598.
[本文引用: 1]
[56]
LI S , YU M , AVESTIMEHR S ,et al. PolyShard:coded sharding achieves linearly scaling efficiency and security simultaneously[J]. arXiv Preprint,arXiv:1809.10361,2018.
[本文引用: 1]
[57]
XIE J F , YU F R , HUANG T ,et al. A survey on the scalability of blockchain systems[J]. IEEE Network, 2019,33: 166-173.
[本文引用: 1]
[58]
BURCHERT C , DECKER C , WATTENHOFER R . Scalable funding of bitcoin micropayment channel networks[C]// Stabilization,Safety,and Security of Distributed Systems. Springer, 2017: 361-377.
[本文引用: 1]
[59]
LUU L , CHU D , OLICKEL H ,et al. Making smart contracts smarter[C]// The 2016 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2016: 254-269.
[本文引用: 1]
[60]
BRENT L , JURISEVIC A , KONG M ,et al. Vandal:a scalable security analysis framework for smart contracts[J]. arXiv Preprint,arXiv:1809.039812018.
[本文引用: 1]
[61]
JIANG B , LIU Y , CHAN W K . ContractFuzzer:fuzzing smart contracts for vulnerability detection[J]. arXiv Preprint,arXiv:1807.03932,2018.
[本文引用: 1]
[62]
HASHEMI S H , FAGHRI F , CAMPBELL R H . Decentralized user-centric access control using pubsub over blockchain[J]. arXiv Preprint,arXiv:1710.00110,2017.
[本文引用: 1]
[63]
BAO S.CAO Y , LEI A ,et al. Pseudonym management through blockchain:cost-efficient privacy preservation on intelligent transportation systems[J]. IEEE Access, 2019,7: 80390-80403.
[本文引用: 1]
[64]
SAMANIEGO M , DETERS R . Hosting virtual IoT resources on edge-hosts with blockchain[C]// IEEE International Conference on Computer & Information Technology. IEEE, 2016: 116-119.
[本文引用: 1]
[65]
STANCIU A , . Blockchain based distributed control system for edge computing[C]// International Conference on Control Systems &Computer Science. IEEE, 2017: 667-671.
[本文引用: 1]
[66]
ZIEGLER M H , GROMANN M , KRIEGER U R . Integration of fog computing and blockchain technology using the plasma framework[C]// 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). IEEE, 2019: 120-123.
[本文引用: 1]
[67]
KIM H , PARK J , BENNIS M ,et al. Blockchained on-device federated learning[J]. arXiv Preprint,arXiv:1808.03949, 2018.
[本文引用: 1]
[68]
BRAVO-MARQUEZ F , REEVES S , UGARTE M . Proof-of- learning:a blockchain consensus mechanism based on machine learning competitions[C]// 2019 IEEE International Conference on Decentralized Applications and Infrastructures. IEEE, 2019: 119-124.
[本文引用: 1]
[69]
刘江, 霍如, 李诚成 ,等. 基于命名数据网络的区块链信息传输机制[J]. 通信学报, 2018,39(1), 24-33.
[本文引用: 1]
LIU J , HUO R , LI C C ,et al. Information transmission mechanism of Blockchain technology based on named-data networking[J]. Journal on Communications, 2018,39(1): 24-33.
[本文引用: 1]
区块链技术发展现状与展望
1
2016
... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...
区块链技术发展现状与展望
1
2016
... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...
企业级区块链技术综述
1
2019
... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...
企业级区块链技术综述
1
2019
... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...
A survey on blockchain-based internet service architecture:requirements,challenges,trends,and future
1
2019
... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...
区块链安全问题:研究现状与展望
1
2016
... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...
区块链安全问题:研究现状与展望
1
2016
... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...
Applications of blockchains in the Internet of things:a comprehensive survey
1
2019
... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...
Blind signature system
1
1984
... 加密货币的概念起源于一种基于盲签名(blind signature)的匿名交易技术[6],最早的加密货币交易模型“electronic cash”[7]如图1所示. ...
How to make a mint:the cryptography of anonymous electronic cash
1
1997
... 加密货币的概念起源于一种基于盲签名(blind signature)的匿名交易技术[6],最早的加密货币交易模型“electronic cash”[7]如图1所示. ...
Proofs of work and bread pudding protocols
1
1999
... 最早的加密货币构想将银行作为构建信任的基础,呈现中心化特点.此后,加密货币朝着去中心化方向发展,并试图用工作量证明(PoW,poof of work)[8]或其改进方法定义价值.比特币在此基础上,采用新型分布式账本技术保证被所有节点维护的数据不可篡改,从而成功构建信任基础,成为真正意义上的去中心化加密货币.区块链从去中心化加密货币发展而来,随着区块链的进一步发展,去中心化加密货币已经成为区块链的主要应用之一. ...
P2P 关键技术研究综述
1
2010
... 对等网络的体系架构可分为无结构对等网络、结构化对等网络和混合式对等网络[9],根据节点的逻辑拓扑关系,区块链网络的组网结构也可以划分为上述3种,如图3所示. ...
P2P 关键技术研究综述
1
2010
... 对等网络的体系架构可分为无结构对等网络、结构化对等网络和混合式对等网络[9],根据节点的逻辑拓扑关系,区块链网络的组网结构也可以划分为上述3种,如图3所示. ...
Epidemic algorithms for replicated database maintenance
1
1988
... 传播层实现对等节点间数据的基本传输,包括2 种数据传播方式:单点传播和多点传播.单点传播是指数据在2个已知节点间直接进行传输而不经过其他节点转发的传播方式;多点传播是指接收数据的节点通过广播向邻近节点进行数据转发的传播方式,区块链网络普遍基于Gossip协议[10]实现洪泛传播.连接层用于获取节点信息,监测和改变节点间连通状态,确保节点间链路的可用性(availability).具体而言,连接层协议帮助新加入节点获取路由表数据,通过定时心跳监测为节点保持稳定连接,在邻居节点失效等情况下为节点关闭连接等.交互逻辑层是区块链网络的核心,从主要流程上看,该层协议承载对等节点间账本数据的同步、交易和区块数据的传输、数据校验结果的反馈等信息交互逻辑,除此之外,还为节点选举、共识算法实施等复杂操作和扩展应用提供消息通路. ...
Information propagation in the bitcoin network
1
2013
... 随着近年来区块链网络的爆炸式发展以及开源特点,学术界开始关注大型公有链项目的网络状况,监测并研究它们的特点,研究对象主要为比特币网络.Decker等[11]设计和实现测量工具,分析传播时延数据、协议数据和地址数据,建模分析影响比特币网络性能的网络层因素,基于此提出各自的优化方法.Fadhil等[12]提出基于事件仿真的比特币网络仿真模型,利用真实测量数据验证模型的有效性,最后提出优化机制 BCBSN,旨在设立超级节点降低网络波动.Kaneko 等[13]将区块链节点分为共识节点和验证节点,其中共识节点采用无结构组网方式,验证节点采用结构化组网方式,利用不同组网方式的优点实现网络负载的均衡. ...
Locality based approach to improve propagation delay on the bitcoin peer-to-peer network
1
2017
... 随着近年来区块链网络的爆炸式发展以及开源特点,学术界开始关注大型公有链项目的网络状况,监测并研究它们的特点,研究对象主要为比特币网络.Decker等[11]设计和实现测量工具,分析传播时延数据、协议数据和地址数据,建模分析影响比特币网络性能的网络层因素,基于此提出各自的优化方法.Fadhil等[12]提出基于事件仿真的比特币网络仿真模型,利用真实测量数据验证模型的有效性,最后提出优化机制 BCBSN,旨在设立超级节点降低网络波动.Kaneko 等[13]将区块链节点分为共识节点和验证节点,其中共识节点采用无结构组网方式,验证节点采用结构化组网方式,利用不同组网方式的优点实现网络负载的均衡. ...
DHT clustering for load balancing considering blockchain data size
1
2018
... 随着近年来区块链网络的爆炸式发展以及开源特点,学术界开始关注大型公有链项目的网络状况,监测并研究它们的特点,研究对象主要为比特币网络.Decker等[11]设计和实现测量工具,分析传播时延数据、协议数据和地址数据,建模分析影响比特币网络性能的网络层因素,基于此提出各自的优化方法.Fadhil等[12]提出基于事件仿真的比特币网络仿真模型,利用真实测量数据验证模型的有效性,最后提出优化机制 BCBSN,旨在设立超级节点降低网络波动.Kaneko 等[13]将区块链节点分为共识节点和验证节点,其中共识节点采用无结构组网方式,验证节点采用结构化组网方式,利用不同组网方式的优点实现网络负载的均衡. ...
An analysis of anonymity in bitcoin using P2P network traffic
2014
Deanonymisation of clients in bitcoin P2P network
2014
Dandelion:redesigning the bitcoin network for anonymity
1
2017
... 匿名性是加密货币的重要特性之一,但从网络层视角看,区块链的匿名性并不能有效保证,因为攻击者可以利用监听并追踪 IP 地址的方式推测出交易之间、交易与公钥地址之间的关系,通过匿名隐私研究可以主动发掘安全隐患,规避潜在危害.Koshy 等[16,17]从网络拓扑、传播层协议和作恶模型3个方面对比特币网络进行建模,通过理论分析和仿真实验证明了比特币网络协议在树形组网结构下仅具备弱匿名性,在此基础上提出 Dandelion 网络策略以较低的网络开销优化匿名性,随后又提出 Dandelion++原理,以最优信息理论保证来抵抗大规模去匿名攻击. ...
Dandelion++:lightweight cryptocurrency networking with formal anonymity guarantees
1
2018
... 匿名性是加密货币的重要特性之一,但从网络层视角看,区块链的匿名性并不能有效保证,因为攻击者可以利用监听并追踪 IP 地址的方式推测出交易之间、交易与公钥地址之间的关系,通过匿名隐私研究可以主动发掘安全隐患,规避潜在危害.Koshy 等[16,17]从网络拓扑、传播层协议和作恶模型3个方面对比特币网络进行建模,通过理论分析和仿真实验证明了比特币网络协议在树形组网结构下仅具备弱匿名性,在此基础上提出 Dandelion 网络策略以较低的网络开销优化匿名性,随后又提出 Dandelion++原理,以最优信息理论保证来抵抗大规模去匿名攻击. ...
Eclipse attacks on Bitcoin’s peer-to-peer network
1
2015
... 区块链重点关注其数据层和共识层面机制,并基于普通网络构建开放的互联环境,该方式极易遭受攻击.为提高区块链网络的安全性,学术界展开研究并给出了相应的解决方案.Heilman 等[18]对比特币和以太坊网络实施日蚀攻击(eclipse attack)——通过屏蔽正确节点从而完全控制特定节点的信息来源,证实了该攻击的可行性.Apostolaki等[19]提出针对比特币网络的 BGP(border gateway protocal)劫持攻击,通过操纵自治域间路由或拦截域间流量来制造节点通信阻塞,表明针对关键数据的沿路攻击可以大大降低区块传播性能. ...
Hijacking bitcoin:routing attacks on cryptocurrencies
2
2017
... 区块链重点关注其数据层和共识层面机制,并基于普通网络构建开放的互联环境,该方式极易遭受攻击.为提高区块链网络的安全性,学术界展开研究并给出了相应的解决方案.Heilman 等[18]对比特币和以太坊网络实施日蚀攻击(eclipse attack)——通过屏蔽正确节点从而完全控制特定节点的信息来源,证实了该攻击的可行性.Apostolaki等[19]提出针对比特币网络的 BGP(border gateway protocal)劫持攻击,通过操纵自治域间路由或拦截域间流量来制造节点通信阻塞,表明针对关键数据的沿路攻击可以大大降低区块传播性能. ...
... 网络层主要缺陷在于安全性,可拓展性则有待优化.如何防御以 BGP 劫持为代表的网络攻击将成为区块链底层网络的安全研究方向[19].信息中心网络将重塑区块链基础传输网络,通过请求聚合和数据缓存减少网内冗余流量并加速通信传输[69].相比于数据层和共识层,区块链网络的关注度较低,但却是影响安全性、可拓展性的基本因素. ...
Improving authenticated dynamic dictionaries,with applications to cryptocurrencies
1
2017
... 高效验证的学术问题源于验证数据结构(ADS,authenticated data structure),即利用特定数据结构快速验证数据的完整性,实际上 MKT 也是其中的一种.为了适应区块链数据的动态性(dynamical)并保持良好性能,学术界展开了研究.Reyzin等[20]基于AVL树形结构提出AVL+,并通过平衡验证路径、缺省堆栈交易集等机制,简化轻量级节点的区块头验证过程.Zhang等[21]提出GEM2-tree结构,并对其进行优化提出 GEM2כ-tree 结构,通过分解单树结构、动态调整节点计算速度、扩展数据索引等机制降低以太坊节点计算开销. ...
GEM^2-tree:a gas-efficient structure for authenticated range queries in blockchain
1
2019
... 高效验证的学术问题源于验证数据结构(ADS,authenticated data structure),即利用特定数据结构快速验证数据的完整性,实际上 MKT 也是其中的一种.为了适应区块链数据的动态性(dynamical)并保持良好性能,学术界展开了研究.Reyzin等[20]基于AVL树形结构提出AVL+,并通过平衡验证路径、缺省堆栈交易集等机制,简化轻量级节点的区块头验证过程.Zhang等[21]提出GEM2-tree结构,并对其进行优化提出 GEM2כ-tree 结构,通过分解单树结构、动态调整节点计算速度、扩展数据索引等机制降低以太坊节点计算开销. ...
An analysis of anonymity in the bitcoin system
1
2011
... 区块数据直接承载业务信息,因此区块数据的匿名关联性分析更为直接.Reid等[22]将区块数据建模为事务网络和用户网络,利用多交易数据的用户指向性分析成功降低网络复杂度.Meiklejohn等[23]利用启发式聚类方法分析交易数据的流动特性并对用户进行分组,通过与这些服务的互动来识别主要机构的比特币地址.Awan 等[24]使用优势集(dominant set)方法对区块链交易进行自动分类,从而提高分析准确率. ...
A fistful of bitcoins:characterizing payments among men with no names
1
2013
... 区块数据直接承载业务信息,因此区块数据的匿名关联性分析更为直接.Reid等[22]将区块数据建模为事务网络和用户网络,利用多交易数据的用户指向性分析成功降低网络复杂度.Meiklejohn等[23]利用启发式聚类方法分析交易数据的流动特性并对用户进行分组,通过与这些服务的互动来识别主要机构的比特币地址.Awan 等[24]使用优势集(dominant set)方法对区块链交易进行自动分类,从而提高分析准确率. ...
Blockchain transaction analysis using dominant sets
1
2017
... 区块数据直接承载业务信息,因此区块数据的匿名关联性分析更为直接.Reid等[22]将区块数据建模为事务网络和用户网络,利用多交易数据的用户指向性分析成功降低网络复杂度.Meiklejohn等[23]利用启发式聚类方法分析交易数据的流动特性并对用户进行分组,通过与这些服务的互动来识别主要机构的比特币地址.Awan 等[24]使用优势集(dominant set)方法对区块链交易进行自动分类,从而提高分析准确率. ...
Increasing anonymity in bitcoin
1
2014
... 隐私保护方面,Saxena等[25]提出复合签名技术削弱数据的关联性,基于双线性映射中的Diffie-Hellman假设保证计算困难性,从而保护用户隐私.Miers 等[26]和 Sasson 等[27]提出 Zerocoin 和Zerocash,在不添加可信方的情况下断开交易间的联系,最早利用零知识证明(zero-knowledge proof)技术隐藏交易的输入、输出和金额信息,提高比特币的匿名性.非对称加密是区块链数据安全的核心,但在量子计算面前却显得“捉襟见肘”,为此Yin等[28]利用盆景树模型(bonsai tree)改进晶格签名技术(lattice-based signature),以保证公私钥的随机性和安全性,使反量子加密技术适用于区块链用户地址的生成. ...
Zerocoin:anonymous distributed e-cash from bitcoin
1
2013
... 隐私保护方面,Saxena等[25]提出复合签名技术削弱数据的关联性,基于双线性映射中的Diffie-Hellman假设保证计算困难性,从而保护用户隐私.Miers 等[26]和 Sasson 等[27]提出 Zerocoin 和Zerocash,在不添加可信方的情况下断开交易间的联系,最早利用零知识证明(zero-knowledge proof)技术隐藏交易的输入、输出和金额信息,提高比特币的匿名性.非对称加密是区块链数据安全的核心,但在量子计算面前却显得“捉襟见肘”,为此Yin等[28]利用盆景树模型(bonsai tree)改进晶格签名技术(lattice-based signature),以保证公私钥的随机性和安全性,使反量子加密技术适用于区块链用户地址的生成. ...
Zerocash:decentralized anonymous payments from bitcoin
1
2014
... 隐私保护方面,Saxena等[25]提出复合签名技术削弱数据的关联性,基于双线性映射中的Diffie-Hellman假设保证计算困难性,从而保护用户隐私.Miers 等[26]和 Sasson 等[27]提出 Zerocoin 和Zerocash,在不添加可信方的情况下断开交易间的联系,最早利用零知识证明(zero-knowledge proof)技术隐藏交易的输入、输出和金额信息,提高比特币的匿名性.非对称加密是区块链数据安全的核心,但在量子计算面前却显得“捉襟见肘”,为此Yin等[28]利用盆景树模型(bonsai tree)改进晶格签名技术(lattice-based signature),以保证公私钥的随机性和安全性,使反量子加密技术适用于区块链用户地址的生成. ...
A anti-quantum transaction authentication approach in blockchain
1
2018
... 隐私保护方面,Saxena等[25]提出复合签名技术削弱数据的关联性,基于双线性映射中的Diffie-Hellman假设保证计算困难性,从而保护用户隐私.Miers 等[26]和 Sasson 等[27]提出 Zerocoin 和Zerocash,在不添加可信方的情况下断开交易间的联系,最早利用零知识证明(zero-knowledge proof)技术隐藏交易的输入、输出和金额信息,提高比特币的匿名性.非对称加密是区块链数据安全的核心,但在量子计算面前却显得“捉襟见肘”,为此Yin等[28]利用盆景树模型(bonsai tree)改进晶格签名技术(lattice-based signature),以保证公私钥的随机性和安全性,使反量子加密技术适用于区块链用户地址的生成. ...
The sybil attack
1
2002
... 区块链网络中每个节点必须维护完全相同的账本数据,然而各节点产生数据的时间不同、获取数据的来源未知,存在节点故意广播错误数据的可能性,这将导致女巫攻击[29]、双花攻击[30]等安全风险;除此之外,节点故障、网络拥塞带来的数据异常也无法预测.因此,如何在不可信的环境下实现账本数据的全网统一是共识层解决的关键问题.实际上,上述错误是拜占庭将军问题(the Byzantine generals problem)[31]在区块链中的具体表现,即拜占庭错误——相互独立的组件可以做出任意或恶意的行为,并可能与其他错误组件产生协作,此类错误在可信分布式计算领域被广泛研究. ...
Double-spending fast payments in bitcoin
1
2012
... 区块链网络中每个节点必须维护完全相同的账本数据,然而各节点产生数据的时间不同、获取数据的来源未知,存在节点故意广播错误数据的可能性,这将导致女巫攻击[29]、双花攻击[30]等安全风险;除此之外,节点故障、网络拥塞带来的数据异常也无法预测.因此,如何在不可信的环境下实现账本数据的全网统一是共识层解决的关键问题.实际上,上述错误是拜占庭将军问题(the Byzantine generals problem)[31]在区块链中的具体表现,即拜占庭错误——相互独立的组件可以做出任意或恶意的行为,并可能与其他错误组件产生协作,此类错误在可信分布式计算领域被广泛研究. ...
The byzantine generals problem
1
1982
... 区块链网络中每个节点必须维护完全相同的账本数据,然而各节点产生数据的时间不同、获取数据的来源未知,存在节点故意广播错误数据的可能性,这将导致女巫攻击[29]、双花攻击[30]等安全风险;除此之外,节点故障、网络拥塞带来的数据异常也无法预测.因此,如何在不可信的环境下实现账本数据的全网统一是共识层解决的关键问题.实际上,上述错误是拜占庭将军问题(the Byzantine generals problem)[31]在区块链中的具体表现,即拜占庭错误——相互独立的组件可以做出任意或恶意的行为,并可能与其他错误组件产生协作,此类错误在可信分布式计算领域被广泛研究. ...
Consensus in the age of blockchains
1
... 状态机复制(state-machine replication)是解决分布式系统容错问题的常用理论.其基本思想为:任何计算都表示为状态机,通过接收消息来更改其状态.假设一组副本以相同的初始状态开始,并且能够就一组公共消息的顺序达成一致,那么它们可以独立进行状态的演化计算,从而正确维护各自副本之间的一致性.同样,区块链也使用状态机复制理论解决拜占庭容错问题,如果把每个节点的数据视为账本数据的副本,那么节点接收到的交易、区块即为引起副本状态变化的消息.状态机复制理论实现和维持副本的一致性主要包含2个要素:正确执行计算逻辑的确定性状态机和传播相同序列消息的共识协议.其中,共识协议是影响容错效果、吞吐量和复杂度的关键,不同安全性、可扩展性要求的系统需要的共识协议各有不同.学术界普遍根据通信模型和容错类型对共识协议进行区分[32],因此严格地说,区块链使用的共识协议需要解决的是部分同步(partial synchrony)模型[33]下的拜占庭容错问题. ...
Consensus in the presence of partial synchrony
2
1988
... 状态机复制(state-machine replication)是解决分布式系统容错问题的常用理论.其基本思想为:任何计算都表示为状态机,通过接收消息来更改其状态.假设一组副本以相同的初始状态开始,并且能够就一组公共消息的顺序达成一致,那么它们可以独立进行状态的演化计算,从而正确维护各自副本之间的一致性.同样,区块链也使用状态机复制理论解决拜占庭容错问题,如果把每个节点的数据视为账本数据的副本,那么节点接收到的交易、区块即为引起副本状态变化的消息.状态机复制理论实现和维持副本的一致性主要包含2个要素:正确执行计算逻辑的确定性状态机和传播相同序列消息的共识协议.其中,共识协议是影响容错效果、吞吐量和复杂度的关键,不同安全性、可扩展性要求的系统需要的共识协议各有不同.学术界普遍根据通信模型和容错类型对共识协议进行区分[32],因此严格地说,区块链使用的共识协议需要解决的是部分同步(partial synchrony)模型[33]下的拜占庭容错问题. ...
... 比特币在网络层采用非结构化方式组网,路由表呈现随机性.节点间则采用多点传播方式传递数据,曾基于Gossip协议实现,为提高网络的抗匿名分析能力改为基于Diffusion协议实现[33].节点利用一系列控制协议确保链路的可用性,包括版本获取(Vetsion/Verack)、地址获取(Addr/GetAddr)、心跳信息(PING/PONG)等.新节点入网时,首先向硬编码 DNS 节点(种子节点)请求初始节点列表;然后向初始节点随机请求它们路由表中的节点信息,以此生成自己的路由表;最后节点通过控制协议与这些节点建立连接,并根据信息交互的频率更新路由表中节点时间戳,从而保证路由表中的节点都是活动的.交互逻辑层为建立共识交互通道,提供了区块获取(GetBlock)、交易验证(MerkleBlock)、主链选择(CmpctBlock)等协议;轻节点只需要进行简单的区块头验证,因此通过头验证(GetHeader/Header)协议和连接层中的过滤设置协议指定需要验证的区块头即可建立简单验证通路.在安全机制方面,比特币网络可选择利用匿名通信网络Tor作为数据传输承载,通过沿路径的层层数据加密机制来保护对端身份. ...
Bitcoin and beyond:a technical survey on decentralized digital currencies
1
2016
... 区块链网络中主要包含PoX(poof of X)[34]、BFT(byzantine-fault tolerant)和 CFT(crash-fault tolerant)类基础共识协议.PoX 类协议是以 PoW (proof of work)为代表的基于奖惩机制驱动的新型共识协议,为了适应数据吞吐量、资源利用率和安全性的需求,人们又提出PoS(proof of stake)、PoST (proof of space-time)等改进协议.它们的基本特点在于设计证明依据,使诚实节点可以证明其合法性,从而实现拜占庭容错.BFT类协议是指解决拜占庭容错问题的传统共识协议及其改良协议,包括PBFT、BFT-SMaRt、Tendermint等.CFT类协议用于实现崩溃容错,通过身份证明等手段规避节点作恶的情况,仅考虑节点或网络的崩溃(crash)故障,主要包括Raft、Paxos、Kafka等协议. ...
Blockchains consensus protocols in the wild
1
2017
... 非许可链和许可链的开放程度和容错需求存在差异,共识层面技术在两者之间产生了较大区别.具体而言,非许可链完全开放,需要抵御严重的拜占庭风险,多采用PoX、BFT类协议并配合奖惩机制实现共识.许可链拥有准入机制,网络中节点身份可知,一定程度降低了拜占庭风险,因此可采用BFT类协议、CFT类协议构建相同的信任模型[35]. ...
Practical byzantine fault tolerance and proactive recovery
1
2002
... PBFT是 BFT经典共识协议,其主要流程如图8 所示.PBFT将节点分为主节点和副节点,其中主节点负责将交易打包成区块,副节点参与验证和转发,假设作恶节点数量为f.PBFT共识主要分为预准备、准备和接受3个阶段,主节点首先收集交易后排序并提出合法区块提案;其余节点先验证提案的合法性,然后根据区块内交易顺序依次执行并将结果摘要组播;各节点收到2f个与自身相同的摘要后便组播接受投票;当节点收到超过2f+1个投票时便存储区块及其产生的新状态[36]. ...
In search of an understandable consensus algorithm
1
2015
... Raft[37]是典型的崩溃容错共识协议,以可用性强著称.Raft将节点分为跟随节点、候选节点和领导节点,领导节点负责将交易打包成区块,追随节点响应领导节点的同步指令,候选节点完成领导节点的选举工作.当网络运行稳定时,只存在领导节点和追随节点,领导节点向追随节点推送区块数据从而实现同步.节点均设置生存时间决定角色变化周期,领导节点的心跳信息不断重置追随节点的生存时间,当领导节点发生崩溃时,追随节点自动转化为候选节点并进入选举流程,实现网络自恢复. ...
Proofs of useful work
1
2017
... 如前文所述,PoX类协议的基本特点在于设计证明依据,使诚实节点可以证明其合法性,从而实现拜占庭容错.uPoW[38]通过计算有意义的正交向量问题证明节点合法性,使算力不被浪费.PoI (proof-of-importance)[39]利用图论原理为每个节点赋予重要性权重,权重越高的节点将越有可能算出区块.PoS(poof-of-stake)为节点定义“币龄”,拥有更高币龄的节点将被分配更多的股份(stake),而股份被作为证明依据用于成块节点的选举.Ouroboros[40]通过引入多方掷币协议增大了选举随机性,引入近乎纳什均衡的激励机制进一步提高PoS 的安全性.PoRep(proof-of-replication)[41]应用于去中心化存储网络,利用证明依据作为贡献存储空间的奖励,促进存储资源再利用. ...
Comparative analysis of blockchain consensus algorithms
1
2018
... 如前文所述,PoX类协议的基本特点在于设计证明依据,使诚实节点可以证明其合法性,从而实现拜占庭容错.uPoW[38]通过计算有意义的正交向量问题证明节点合法性,使算力不被浪费.PoI (proof-of-importance)[39]利用图论原理为每个节点赋予重要性权重,权重越高的节点将越有可能算出区块.PoS(poof-of-stake)为节点定义“币龄”,拥有更高币龄的节点将被分配更多的股份(stake),而股份被作为证明依据用于成块节点的选举.Ouroboros[40]通过引入多方掷币协议增大了选举随机性,引入近乎纳什均衡的激励机制进一步提高PoS 的安全性.PoRep(proof-of-replication)[41]应用于去中心化存储网络,利用证明依据作为贡献存储空间的奖励,促进存储资源再利用. ...
Ouroboros:a provably secure proof-of-stake blockchain protocol
1
2017
... 如前文所述,PoX类协议的基本特点在于设计证明依据,使诚实节点可以证明其合法性,从而实现拜占庭容错.uPoW[38]通过计算有意义的正交向量问题证明节点合法性,使算力不被浪费.PoI (proof-of-importance)[39]利用图论原理为每个节点赋予重要性权重,权重越高的节点将越有可能算出区块.PoS(poof-of-stake)为节点定义“币龄”,拥有更高币龄的节点将被分配更多的股份(stake),而股份被作为证明依据用于成块节点的选举.Ouroboros[40]通过引入多方掷币协议增大了选举随机性,引入近乎纳什均衡的激励机制进一步提高PoS 的安全性.PoRep(proof-of-replication)[41]应用于去中心化存储网络,利用证明依据作为贡献存储空间的奖励,促进存储资源再利用. ...
Tight proofs of space and replication
1
... 如前文所述,PoX类协议的基本特点在于设计证明依据,使诚实节点可以证明其合法性,从而实现拜占庭容错.uPoW[38]通过计算有意义的正交向量问题证明节点合法性,使算力不被浪费.PoI (proof-of-importance)[39]利用图论原理为每个节点赋予重要性权重,权重越高的节点将越有可能算出区块.PoS(poof-of-stake)为节点定义“币龄”,拥有更高币龄的节点将被分配更多的股份(stake),而股份被作为证明依据用于成块节点的选举.Ouroboros[40]通过引入多方掷币协议增大了选举随机性,引入近乎纳什均衡的激励机制进一步提高PoS 的安全性.PoRep(proof-of-replication)[41]应用于去中心化存储网络,利用证明依据作为贡献存储空间的奖励,促进存储资源再利用. ...
A vademecum on blockchain technologies:when,which,and how
1
2019
... BFT协议有较长的发展史,在区块链研究中被赋予了新的活力.SCP[42]和Ripple[43]基于联邦拜占庭共识[44]——存在交集的多池(确定规模的联邦)共识,分别允许节点自主选择或与指定的节点构成共识联邦,通过联邦交集达成全网共识.Tendermint[45]使用Gossip通信协议基本实现异步拜占庭共识,不仅简化了流程而且提高了可用性.HotStuff[46]将BFT与链式结构数据相结合,使主节点能够以实际网络时延及 O(n)通信复杂度推动协议达成一致.LibraBFT[47]在HotStuff的基础上加入奖惩机制及节点替换机制,从而优化了性能. ...
A survey on consensus mechanisms and mining strategy management in blockchain networks
1
2019
... BFT协议有较长的发展史,在区块链研究中被赋予了新的活力.SCP[42]和Ripple[43]基于联邦拜占庭共识[44]——存在交集的多池(确定规模的联邦)共识,分别允许节点自主选择或与指定的节点构成共识联邦,通过联邦交集达成全网共识.Tendermint[45]使用Gossip通信协议基本实现异步拜占庭共识,不仅简化了流程而且提高了可用性.HotStuff[46]将BFT与链式结构数据相结合,使主节点能够以实际网络时延及 O(n)通信复杂度推动协议达成一致.LibraBFT[47]在HotStuff的基础上加入奖惩机制及节点替换机制,从而优化了性能. ...
Formal modeling and verification of a federated byzantine agreement algorithm for blockchain platforms
1
2019
... BFT协议有较长的发展史,在区块链研究中被赋予了新的活力.SCP[42]和Ripple[43]基于联邦拜占庭共识[44]——存在交集的多池(确定规模的联邦)共识,分别允许节点自主选择或与指定的节点构成共识联邦,通过联邦交集达成全网共识.Tendermint[45]使用Gossip通信协议基本实现异步拜占庭共识,不仅简化了流程而且提高了可用性.HotStuff[46]将BFT与链式结构数据相结合,使主节点能够以实际网络时延及 O(n)通信复杂度推动协议达成一致.LibraBFT[47]在HotStuff的基础上加入奖惩机制及节点替换机制,从而优化了性能. ...
An overview of blockchain technology:architecture,consensus,and future trends
1
2017
... BFT协议有较长的发展史,在区块链研究中被赋予了新的活力.SCP[42]和Ripple[43]基于联邦拜占庭共识[44]——存在交集的多池(确定规模的联邦)共识,分别允许节点自主选择或与指定的节点构成共识联邦,通过联邦交集达成全网共识.Tendermint[45]使用Gossip通信协议基本实现异步拜占庭共识,不仅简化了流程而且提高了可用性.HotStuff[46]将BFT与链式结构数据相结合,使主节点能够以实际网络时延及 O(n)通信复杂度推动协议达成一致.LibraBFT[47]在HotStuff的基础上加入奖惩机制及节点替换机制,从而优化了性能. ...
HotStuff:BFT consensus in the lens of blockchain
1
2019
... BFT协议有较长的发展史,在区块链研究中被赋予了新的活力.SCP[42]和Ripple[43]基于联邦拜占庭共识[44]——存在交集的多池(确定规模的联邦)共识,分别允许节点自主选择或与指定的节点构成共识联邦,通过联邦交集达成全网共识.Tendermint[45]使用Gossip通信协议基本实现异步拜占庭共识,不仅简化了流程而且提高了可用性.HotStuff[46]将BFT与链式结构数据相结合,使主节点能够以实际网络时延及 O(n)通信复杂度推动协议达成一致.LibraBFT[47]在HotStuff的基础上加入奖惩机制及节点替换机制,从而优化了性能. ...
Libra critique towards global decentralized financial system
1
2019
... BFT协议有较长的发展史,在区块链研究中被赋予了新的活力.SCP[42]和Ripple[43]基于联邦拜占庭共识[44]——存在交集的多池(确定规模的联邦)共识,分别允许节点自主选择或与指定的节点构成共识联邦,通过联邦交集达成全网共识.Tendermint[45]使用Gossip通信协议基本实现异步拜占庭共识,不仅简化了流程而且提高了可用性.HotStuff[46]将BFT与链式结构数据相结合,使主节点能够以实际网络时延及 O(n)通信复杂度推动协议达成一致.LibraBFT[47]在HotStuff的基础上加入奖惩机制及节点替换机制,从而优化了性能. ...
Proof of activity:extending bitcoin’s proof of work via proof of stake
1
... Hybrid 类协议是研究趋势之一.PoA[48]利用PoW产生空区块头,利用PoS决定由哪些节点进行记账和背书,其奖励由背书节点和出块节点共享.PeerCensus[49]由节点团体进行拜占庭协议实现共识,而节点必须基于比特币网络,通过 PoW 产出区块后才能获得投票权力.ByzCoin[50]利用PoW的算力特性构建动态成员关系,并引入联合签名方案来减小PBFT的轮次通信开销,提高交易吞吐量,降低确认时延.Casper[51]则通过PoS的股份决定节点构成团体并进行BFT共识,且节点可投票数取决于股份. ...
Bitcoin meets strong consistency
1
... Hybrid 类协议是研究趋势之一.PoA[48]利用PoW产生空区块头,利用PoS决定由哪些节点进行记账和背书,其奖励由背书节点和出块节点共享.PeerCensus[49]由节点团体进行拜占庭协议实现共识,而节点必须基于比特币网络,通过 PoW 产出区块后才能获得投票权力.ByzCoin[50]利用PoW的算力特性构建动态成员关系,并引入联合签名方案来减小PBFT的轮次通信开销,提高交易吞吐量,降低确认时延.Casper[51]则通过PoS的股份决定节点构成团体并进行BFT共识,且节点可投票数取决于股份. ...
Enhancing bitcoin security and performance with strong consistency via collective signing
1
2016
... Hybrid 类协议是研究趋势之一.PoA[48]利用PoW产生空区块头,利用PoS决定由哪些节点进行记账和背书,其奖励由背书节点和出块节点共享.PeerCensus[49]由节点团体进行拜占庭协议实现共识,而节点必须基于比特币网络,通过 PoW 产出区块后才能获得投票权力.ByzCoin[50]利用PoW的算力特性构建动态成员关系,并引入联合签名方案来减小PBFT的轮次通信开销,提高交易吞吐量,降低确认时延.Casper[51]则通过PoS的股份决定节点构成团体并进行BFT共识,且节点可投票数取决于股份. ...
Casper the friendly finality gadget
1
... Hybrid 类协议是研究趋势之一.PoA[48]利用PoW产生空区块头,利用PoS决定由哪些节点进行记账和背书,其奖励由背书节点和出块节点共享.PeerCensus[49]由节点团体进行拜占庭协议实现共识,而节点必须基于比特币网络,通过 PoW 产出区块后才能获得投票权力.ByzCoin[50]利用PoW的算力特性构建动态成员关系,并引入联合签名方案来减小PBFT的轮次通信开销,提高交易吞吐量,降低确认时延.Casper[51]则通过PoS的股份决定节点构成团体并进行BFT共识,且节点可投票数取决于股份. ...
Bitcoin and beyond:a technical survey on decentralized digital currencies
1
2016
... 侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷.Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花.Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余.分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载.ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证.OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性.区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障.上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案.实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付.Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认. ...
Non-interactive proofs of proof-of-work
1
... 侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷.Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花.Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余.分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载.ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证.OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性.区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障.上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案.实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付.Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认. ...
A secure sharding protocol for open blockchains
1
2016
... 侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷.Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花.Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余.分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载.ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证.OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性.区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障.上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案.实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付.Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认. ...
OmniLedger:a secure,scale-out,decentralized ledger via sharding
1
2018
... 侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷.Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花.Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余.分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载.ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证.OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性.区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障.上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案.实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付.Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认. ...
PolyShard:coded sharding achieves linearly scaling efficiency and security simultaneously
1
... 侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷.Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花.Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余.分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载.ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证.OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性.区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障.上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案.实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付.Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认. ...
A survey on the scalability of blockchain systems
1
2019
... 侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷.Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花.Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余.分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载.ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证.OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性.区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障.上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案.实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付.Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认. ...
Scalable funding of bitcoin micropayment channel networks
1
2017
... 侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷.Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花.Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余.分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载.ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证.OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性.区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障.上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案.实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付.Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认. ...
Making smart contracts smarter
1
2016
... 一方面,沙盒环境承载了区块链节点运行条件,针对虚拟机展开的攻击更为直接;另一方面,智能合约直接对账本进行操作,其漏洞更易影响业务运行,因此控制层的安全防护研究成为热点.Luu等[59]分析了运行于EVM中的智能合约安全性,指出底层平台的分布式语义差异带来的安全问题.Brent 等[60]提出智能合约安全分析框架 Vandal,将EVM 字节码转换为语义逻辑关,为分析合约安全漏洞提供便利.Jiang 等[61]预先定义用于安全漏洞的特征,然后模拟执行大规模交易,通过分析日志中的合约行为实现漏洞检测. ...
Vandal:a scalable security analysis framework for smart contracts
1
2018
... 一方面,沙盒环境承载了区块链节点运行条件,针对虚拟机展开的攻击更为直接;另一方面,智能合约直接对账本进行操作,其漏洞更易影响业务运行,因此控制层的安全防护研究成为热点.Luu等[59]分析了运行于EVM中的智能合约安全性,指出底层平台的分布式语义差异带来的安全问题.Brent 等[60]提出智能合约安全分析框架 Vandal,将EVM 字节码转换为语义逻辑关,为分析合约安全漏洞提供便利.Jiang 等[61]预先定义用于安全漏洞的特征,然后模拟执行大规模交易,通过分析日志中的合约行为实现漏洞检测. ...
ContractFuzzer:fuzzing smart contracts for vulnerability detection
1
2018
... 一方面,沙盒环境承载了区块链节点运行条件,针对虚拟机展开的攻击更为直接;另一方面,智能合约直接对账本进行操作,其漏洞更易影响业务运行,因此控制层的安全防护研究成为热点.Luu等[59]分析了运行于EVM中的智能合约安全性,指出底层平台的分布式语义差异带来的安全问题.Brent 等[60]提出智能合约安全分析框架 Vandal,将EVM 字节码转换为语义逻辑关,为分析合约安全漏洞提供便利.Jiang 等[61]预先定义用于安全漏洞的特征,然后模拟执行大规模交易,通过分析日志中的合约行为实现漏洞检测. ...
Decentralized user-centric access control using pubsub over blockchain
1
2017
... 智慧城市是指利用 ICT 优化公共资源利用效果、提高居民生活质量、丰富设施信息化能力的研究领域,该领域包括个人信息管理、智慧医疗、智慧交通、供应链管理等具体场景.智慧城市强调居民、设施等各类数据的采集、分析与使能,数据可靠性、管理透明化、共享可激励等需求为智慧城市带来了许多技术挑战.区块链去中心化的交互方式避免了单点故障、提升管理公平性,公开透明的账本保证数据可靠及可追溯性,多种匿名机制利于居民隐私的保护,因此区块链有利于问题的解决.Hashemi等[62]将区块链用于权限数据存储,构建去中心化的个人数据接入控制模型;Bao等[63]利用区块链高效认证和管理用户标识,保护车主的身份、位置、车辆信息等个人数据. ...
Pseudonym management through blockchain:cost-efficient privacy preservation on intelligent transportation systems
1
2019
... 智慧城市是指利用 ICT 优化公共资源利用效果、提高居民生活质量、丰富设施信息化能力的研究领域,该领域包括个人信息管理、智慧医疗、智慧交通、供应链管理等具体场景.智慧城市强调居民、设施等各类数据的采集、分析与使能,数据可靠性、管理透明化、共享可激励等需求为智慧城市带来了许多技术挑战.区块链去中心化的交互方式避免了单点故障、提升管理公平性,公开透明的账本保证数据可靠及可追溯性,多种匿名机制利于居民隐私的保护,因此区块链有利于问题的解决.Hashemi等[62]将区块链用于权限数据存储,构建去中心化的个人数据接入控制模型;Bao等[63]利用区块链高效认证和管理用户标识,保护车主的身份、位置、车辆信息等个人数据. ...
Hosting virtual IoT resources on edge-hosts with blockchain
1
2016
... 边缘计算是一种将计算、存储、网络资源从云平台迁移到网络边缘的分布式信息服务架构,试图将传统移动通信网、互联网和物联网等业务进行深度融合,减少业务交付的端到端时延,提升用户体验.安全问题是边缘计算面临的一大技术挑战,一方面,边缘计算的层次结构中利用大量异构终端设备提供用户服务,这些设备可能产生恶意行为;另一方面,服务迁移过程中的数据完整性和真实性需要得到保障.区块链在这种复杂的工作环境和开放的服务架构中能起到较大作用.首先,区块链能够在边缘计算底层松散的设备网络中构建不可篡改的账本,提供设备身份和服务数据验证的依据.其次,设备能在智能合约的帮助下实现高度自治,为边缘计算提供设备可信互操作基础.Samaniego等[64]提出了一种基于区块链的虚拟物联网资源迁移架构,通过区块链共享资源数据从而保障安全性.Stanciu[65]结合软件定义网络(SDN)、雾计算和区块链技术提出分布式安全云架构,解决雾节点中SDN控制器流表策略的安全分发问题.Ziegler等[66]基于 Plasma 框架提出雾计算场景下的区块链可扩展应用方案,提升雾计算网关的安全性. ...
Blockchain based distributed control system for edge computing
1
2017
... 边缘计算是一种将计算、存储、网络资源从云平台迁移到网络边缘的分布式信息服务架构,试图将传统移动通信网、互联网和物联网等业务进行深度融合,减少业务交付的端到端时延,提升用户体验.安全问题是边缘计算面临的一大技术挑战,一方面,边缘计算的层次结构中利用大量异构终端设备提供用户服务,这些设备可能产生恶意行为;另一方面,服务迁移过程中的数据完整性和真实性需要得到保障.区块链在这种复杂的工作环境和开放的服务架构中能起到较大作用.首先,区块链能够在边缘计算底层松散的设备网络中构建不可篡改的账本,提供设备身份和服务数据验证的依据.其次,设备能在智能合约的帮助下实现高度自治,为边缘计算提供设备可信互操作基础.Samaniego等[64]提出了一种基于区块链的虚拟物联网资源迁移架构,通过区块链共享资源数据从而保障安全性.Stanciu[65]结合软件定义网络(SDN)、雾计算和区块链技术提出分布式安全云架构,解决雾节点中SDN控制器流表策略的安全分发问题.Ziegler等[66]基于 Plasma 框架提出雾计算场景下的区块链可扩展应用方案,提升雾计算网关的安全性. ...
Integration of fog computing and blockchain technology using the plasma framework
1
2019
... 边缘计算是一种将计算、存储、网络资源从云平台迁移到网络边缘的分布式信息服务架构,试图将传统移动通信网、互联网和物联网等业务进行深度融合,减少业务交付的端到端时延,提升用户体验.安全问题是边缘计算面临的一大技术挑战,一方面,边缘计算的层次结构中利用大量异构终端设备提供用户服务,这些设备可能产生恶意行为;另一方面,服务迁移过程中的数据完整性和真实性需要得到保障.区块链在这种复杂的工作环境和开放的服务架构中能起到较大作用.首先,区块链能够在边缘计算底层松散的设备网络中构建不可篡改的账本,提供设备身份和服务数据验证的依据.其次,设备能在智能合约的帮助下实现高度自治,为边缘计算提供设备可信互操作基础.Samaniego等[64]提出了一种基于区块链的虚拟物联网资源迁移架构,通过区块链共享资源数据从而保障安全性.Stanciu[65]结合软件定义网络(SDN)、雾计算和区块链技术提出分布式安全云架构,解决雾节点中SDN控制器流表策略的安全分发问题.Ziegler等[66]基于 Plasma 框架提出雾计算场景下的区块链可扩展应用方案,提升雾计算网关的安全性. ...
Blockchained on-device federated learning
1
2018
... 人工智能是一类智能代理的研究,使机器感知环境/信息,然后进行正确的行为决策,正确是指达成人类预定的某些目标.人工智能的关键在于算法,而大部分机器学习和深度学习算法建立于体积庞大的数据集和中心化的训练模型之上,该方式易受攻击或恶意操作使数据遭到篡改,其后果为模型的不可信与算力的浪费.此外,数据采集过程中无法确保下游设备的安全性,无法保证数据来源的真实性与完整性,其后果将在自动驾驶等场景中被放大.区块链不可篡改的特性可以实现感知和训练过程的可信.另外,去中心化和合约自治特性为人工智能训练工作的分解和下放奠定了基础,保障安全的基础上提高计算效率.Kim等[67]利用区块链验证联合学习框架下的分发模型的完整性,并根据计算成本提供相应的激励,优化整体学习效果.Bravo-Marquez 等[68]提出共识机制“学习证明”以减轻PoX类共识的计算浪费,构建公共可验证的学习模型和实验数据库. ...
Proof-of- learning:a blockchain consensus mechanism based on machine learning competitions
1
2019
... 人工智能是一类智能代理的研究,使机器感知环境/信息,然后进行正确的行为决策,正确是指达成人类预定的某些目标.人工智能的关键在于算法,而大部分机器学习和深度学习算法建立于体积庞大的数据集和中心化的训练模型之上,该方式易受攻击或恶意操作使数据遭到篡改,其后果为模型的不可信与算力的浪费.此外,数据采集过程中无法确保下游设备的安全性,无法保证数据来源的真实性与完整性,其后果将在自动驾驶等场景中被放大.区块链不可篡改的特性可以实现感知和训练过程的可信.另外,去中心化和合约自治特性为人工智能训练工作的分解和下放奠定了基础,保障安全的基础上提高计算效率.Kim等[67]利用区块链验证联合学习框架下的分发模型的完整性,并根据计算成本提供相应的激励,优化整体学习效果.Bravo-Marquez 等[68]提出共识机制“学习证明”以减轻PoX类共识的计算浪费,构建公共可验证的学习模型和实验数据库. ...
基于命名数据网络的区块链信息传输机制
1
2018
... 网络层主要缺陷在于安全性,可拓展性则有待优化.如何防御以 BGP 劫持为代表的网络攻击将成为区块链底层网络的安全研究方向[19].信息中心网络将重塑区块链基础传输网络,通过请求聚合和数据缓存减少网内冗余流量并加速通信传输[69].相比于数据层和共识层,区块链网络的关注度较低,但却是影响安全性、可拓展性的基本因素. ...
基于命名数据网络的区块链信息传输机制
1
2018
... 网络层主要缺陷在于安全性,可拓展性则有待优化.如何防御以 BGP 劫持为代表的网络攻击将成为区块链底层网络的安全研究方向[19].信息中心网络将重塑区块链基础传输网络,通过请求聚合和数据缓存减少网内冗余流量并加速通信传输[69].相比于数据层和共识层,区块链网络的关注度较低,但却是影响安全性、可拓展性的基本因素. ...
/
〈
〉
期刊网站版权所有 © 2021 《通信学报》编辑部
地址:北京市丰台区东铁匠营街道顺八条1号院B座“北阳晨光大厦”2层 邮编:100079
电话:010-53878169、53859522、53878236 电子邮件:xuebao@ptpress.com.cn; txxb@bjxintong.com.cn
期刊网站版权所有 © 2021 《通信学报》编辑部
地址:北京市丰台区东铁匠营街道顺八条1号院B座“北阳晨光大厦”2层
邮编:100079 电话:010-53878169、53859522、53878236
电子邮件:txxb@bjxintong.com.cn
跌跌不休!比特币为何崩盘?|比特币_新浪科技_新浪网
跌跌不休!比特币为何崩盘?|比特币_新浪科技_新浪网
新浪首页
新闻
体育
财经
娱乐
科技
博客
图片
专栏
更多
汽车教育时尚女性星座健康
房产历史视频收藏育儿读书
佛学游戏旅游邮箱导航
移动客户端
新浪微博
新浪新闻
新浪财经
新浪体育
新浪众测
新浪博客
新浪视频
新浪游戏
天气通
我的收藏
注册
登录
新浪科技> 业界 > 正文
新闻
图片
视频
跌跌不休!比特币为何崩盘?
跌跌不休!比特币为何崩盘?
2022年06月15日 08:23
新浪科技
新浪财经APP
缩小字体
放大字体
收藏
微博
微信
分享
腾讯QQ
QQ空间
新浪科技讯 北京时间6月15日早间消息,据报道,比特币近日暴跌,截至发稿已跌至22006.3美元,在8个月的时间里,比特币已经下跌68%。BBC撰文,对比特币崩盘的原因和时间点进行了解读。
发生了什么?
近日,比特币价格创18个月以来的新低。虽然它在去年11月才刚刚创下7万美元的历史新高,但如今看来,却恍若隔世。在8个月的时间里,比特币已经下跌68%。
如果打开K线图,你会看到满眼绿色,脑海中一定会浮现出四个字——跌跌不休!
据悉,加密借贷平台Celsius已经聘请了律师事务所进行重组,并正在向投资者寻求可能的融资方案。甚至连美国最大数字加密货币交易所Coinbase都宣布裁员1100人。
为什么?
专家认为,这是因为全球经济环境所致,跌跌不休的不只是加密货币市场。
衰退阴影笼罩,通胀数据凶猛,利率逐步走高,生活成本上升。股市同样哀鸿遍野,标准普尔500指数已然进入熊市(较近期高点下跌20%)。
就连最大牌的投资者,手头的资金也不宽裕。除了那些财大气粗的对冲基金或企业外,像你我这样的普通投资者更是没什么投资渠道。整个投资市场都像是一潭死水。
对许多人而言,加密货币这种波动巨大、无法预测的投资品种,在当下的风险实在是太大了。
比特币不受政府监管,自然也就得不到保护,所以如果你用自己的积蓄来投资比特币,那么一旦下跌,或者一旦无法访问加密货币钱包,你就会血本无归。
为什么是现在?
上个月,其实已经有两种很低调但也很重要的加密货币崩盘,导致整个市场的信心崩溃。
于是,抛盘的压力进一步加强。
抛盘压力越大,比特币的价值就越低。这都源自它的运作模式——比特币的价值取决于市场需求。于是便引发连锁反应,促使更多人因为下跌而抛售……恶性循环就此开启。
与其他传统资产不同,比特币没有可供锚定的内在价值——按照《金融时报》编辑Katie Martin的说法,它没有固定资产,没有收入流,也没有底层业务。
“其价格完全取决于人们的买入意愿。”她说,“这对投资者来说是非常可怕的,因为如果有足够的人抛售,那就没有底价可言。只要有足够的人抛售或被迫抛售,没有什么能阻止它明天跌到1万美元。”
为什么是这几天?
上文介绍的是令比特币陷入困境的背景信息,下面再来看看过去24小时的情况:
1.全球最大加密货币交易所币安一度暂停了所有比特币的提款业务,持续大约几个小时。他们表示,这是因为“交易拥堵”——但许多人并不相信这个理由。
2.加密货币贷款机构Celsius出现了同样的问题——但它给出的理由是“极端市场情况”,而非技术原因。而现在,Coinbase交易所刚刚宣布裁员18%,并将“加密货币寒冬”列为原因之一。
3.投资者如惊弓之鸟,引发了更多抛盘。
前两件事情引发了恐慌。试想,如果你突然之间无法从银行取钱,或者你听说其他人取不出钱,你会怎么办?你肯定会奔向最近的自动取款机,其他人也会如此,而且大家都会争分夺秒。这种行为本身就会引发更多挤兑和恐慌。
怎样才能扭转局势?
简而言之——要稳定比特币的现状,仍然持有比特币的人需要坚定持有,而其他人则需要再次买入。
之前就发生过这种情况。
加密货币粉丝会告诉你,现在是买入良机,因为它很便宜——可你多半会按兵不动,眼睁睁看着它掉头向上。
这样的戏码已经上演过无数次。
在比特币的世界,“一夜暴富”的故事屡见不鲜,名人的背书也数不胜数。这也难怪它总能吸引新的资金。
特斯拉CEO埃隆·马斯克(Elon Musk)就曾多次表达他对加密货币的热爱——他的电动汽车公司特斯拉去年买入了15亿美元比特币。
但投资顾问却敦促投资者要格外谨慎。
“说实话,在如今这个价位,只有勇敢的人才会买入。”State Street Advisors董事总经理Altaff Kassam接受媒体采访时说。
提到勇敢的人,好莱坞一线明星马特·达蒙(Matt Damon)在2021年10月出现在一则加密货币广告中,标语写道:“财富青睐勇者。”这则广告在“超级碗”期间播放,在Twitter和YouTube上的播放量达到2800万次。
然而,在这则广告发布时买入比特币的“勇者”,此时此刻恐怕感受不到任何“青睐”——它如今的价格已经跌倒当初的1/3。
关键词 :
比特币
我要反馈
新浪科技公众号
“掌”握科技鲜闻 (微信搜索techsina或扫描左侧二维码关注)
相关新闻
加载中
点击加载更多
财经头条作者库
创事记
拼多多的宿命,快手能否跨越? 卫生间困扰星巴克 吉利收下魅族,手机企业要造车,汽车巨头爱搞机
阅读排行榜
评论排行榜
中国天眼发现地外文明可疑信号,相关团队正进一步排查 旷视孙剑意外去世震惊业内 死因仍在调查中 癌症史新突破!美国16名患者仅用药半年肿瘤全部消失 问界M5引发华为门店火灾?AITO:尚未发现车辆异常 火灾原因需等有关部门调查结果 小米,何至于此? SpaceX遭NASA警告:星舰发射不能炸毁宇航员专用发射架 工信部:我国新能源汽车产销量连续7年位居世界首位 英国央行行长贝利:加密资产没有内在价值 特斯拉进军印度市场失败 业务发展主管已辞职 升级iOS 16后,我哭了23次!
微信新增“群聊消息置顶”功能 新东方再次掌握流量密码!双语带货出圈,券商看好半月粉丝破千万 为什么Web3.0革命必将发生在中国? 警方通报鄂尔多斯一华为手机店起火:已致两人死亡 悼念!孙剑博士凌晨逝世,AI痛失大牛,旷视痛失技术领路人 小音咖被曝拖欠教师数月工资,公司称计划打折分期支付 为什么中国的硬科技和世界差距如此之大? 中国天眼发现地外文明可疑信号,相关团队正进一步排查 癌症史新突破!美国16名患者仅用药半年肿瘤全部消失 旷视科技发讣告:首席科学家、研究院院长孙剑去世
科学探索
威马递表港交所 累计售车不足10万去年亏...
科学大家
《科学大家》| 新冠疫苗接种已不是选择题...
苹果汇
疫情给世界和苹果带来哪些改变?我们和库克...
众测
百克龙E1500 Pro
来电聊
2018新浪科技风云榜回顾
专题
Kindle中国电子书店将停运 电子阅读...
官方微博
公众号
新浪科技
新浪科技为你带来最新鲜的科技资讯
苹果汇
苹果汇为你带来最新鲜的苹果产品新闻
新浪众测
新酷产品第一时间免费试玩
新浪探索
提供最新的科学家新闻,精彩的震撼图片
新浪科技意见反馈留言板
新浪简介|广告服务|About Sina
联系我们|招聘信息|通行证注册
产品答疑|网站律师|SINA English
Copyright © 1996-2022 SINA Corporation
All Rights Reserved 新浪公司 版权所有
新浪首页
新浪众测
语音播报
相关新闻
返回顶部